taesd.py 2.47 KB
Newer Older
space-nuko's avatar
space-nuko committed
1
2
3
4
5
6
7
8
#!/usr/bin/env python3
"""
Tiny AutoEncoder for Stable Diffusion
(DNN for encoding / decoding SD's latent space)
"""
import torch
import torch.nn as nn

comfyanonymous's avatar
comfyanonymous committed
9
10
import comfy.utils

space-nuko's avatar
space-nuko committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def conv(n_in, n_out, **kwargs):
    return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)

class Clamp(nn.Module):
    def forward(self, x):
        return torch.tanh(x / 3) * 3

class Block(nn.Module):
    def __init__(self, n_in, n_out):
        super().__init__()
        self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
        self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
        self.fuse = nn.ReLU()
    def forward(self, x):
        return self.fuse(self.conv(x) + self.skip(x))

def Encoder():
    return nn.Sequential(
        conv(3, 64), Block(64, 64),
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
        conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
        conv(64, 4),
    )

def Decoder():
    return nn.Sequential(
        Clamp(), conv(4, 64), nn.ReLU(),
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
        Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
        Block(64, 64), conv(64, 3),
    )

class TAESD(nn.Module):
    latent_magnitude = 3
    latent_shift = 0.5

    def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"):
        """Initialize pretrained TAESD on the given device from the given checkpoints."""
        super().__init__()
        self.encoder = Encoder()
        self.decoder = Decoder()
        if encoder_path is not None:
comfyanonymous's avatar
comfyanonymous committed
55
            self.encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True))
space-nuko's avatar
space-nuko committed
56
        if decoder_path is not None:
comfyanonymous's avatar
comfyanonymous committed
57
            self.decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True))
space-nuko's avatar
space-nuko committed
58
59
60
61
62
63
64
65
66
67

    @staticmethod
    def scale_latents(x):
        """raw latents -> [0, 1]"""
        return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)

    @staticmethod
    def unscale_latents(x):
        """[0, 1] -> raw latents"""
        return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)