"vscode:/vscode.git/clone" did not exist on "1e9fe08f173499d2e293df4f32d8f000aec14b37"
nodes_post_processing.py 6.66 KB
Newer Older
1
import numpy as np
2
3
import torch
import torch.nn.functional as F
4
from PIL import Image
5

EllangoK's avatar
EllangoK committed
6
7
import comfy.utils

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

class Blend:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image1": ("IMAGE",),
                "image2": ("IMAGE",),
                "blend_factor": ("FLOAT", {
                    "default": 0.5,
                    "min": 0.0,
                    "max": 1.0,
                    "step": 0.01
                }),
                "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blend_images"

    CATEGORY = "postprocessing"

    def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
35
        if image1.shape != image2.shape:
EllangoK's avatar
EllangoK committed
36
37
38
            image2 = image2.permute(0, 3, 1, 2)
            image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
            image2 = image2.permute(0, 2, 3, 1)
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        blended_image = self.blend_mode(image1, image2, blend_mode)
        blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
        blended_image = torch.clamp(blended_image, 0, 1)
        return (blended_image,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        elif mode == "multiply":
            return img1 * img2
        elif mode == "screen":
            return 1 - (1 - img1) * (1 - img2)
        elif mode == "overlay":
            return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
        elif mode == "soft_light":
            return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

    def g(self, x):
        return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))

class Blur:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "blur_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
                "sigma": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.1,
                    "max": 10.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blur"

    CATEGORY = "postprocessing"

    def gaussian_kernel(self, kernel_size: int, sigma: float):
        x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
        d = torch.sqrt(x * x + y * y)
        g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
        return g / g.sum()

    def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
        if blur_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = blur_radius * 2 + 1
        kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)

        image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
        blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)
        blurred = blurred.permute(0, 2, 3, 1)

        return (blurred,)

112
class Quantize:
113
114
115
116
117
118
119
120
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
121
122
                "colors": ("INT", {
                    "default": 256,
123
                    "min": 1,
124
                    "max": 256,
125
126
                    "step": 1
                }),
127
                "dither": (["none", "floyd-steinberg"],),
128
129
130
131
            },
        }

    RETURN_TYPES = ("IMAGE",)
132
    FUNCTION = "quantize"
133
134
135

    CATEGORY = "postprocessing"

136
    def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
137
138
139
        batch_size, height, width, _ = image.shape
        result = torch.zeros_like(image)

140
141
        dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE

142
143
        for b in range(batch_size):
            tensor_image = image[b]
144
145
            img = (tensor_image * 255).to(torch.uint8).numpy()
            pil_image = Image.fromarray(img, mode='RGB')
146

147
148
            palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
            quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)
149

150
151
            quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
            result[b] = quantized_array
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

        return (result,)

class Sharpen:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "sharpen_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
                "alpha": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.1,
                    "max": 5.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "sharpen"

    CATEGORY = "postprocessing"

    def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float):
        if sharpen_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = sharpen_radius * 2 + 1
        kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1
        center = kernel_size // 2
        kernel[center, center] = kernel_size**2
        kernel *= alpha
        kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)

        tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
        sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)
        sharpened = sharpened.permute(0, 2, 3, 1)

        result = torch.clamp(sharpened, 0, 1)

        return (result,)

NODE_CLASS_MAPPINGS = {
    "Blend": Blend,
    "Blur": Blur,
208
    "Quantize": Quantize,
209
210
    "Sharpen": Sharpen,
}