sd.py 16.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import torch

import sd1_clip
import sd2_clip
5
import model_management
comfyanonymous's avatar
comfyanonymous committed
6
7
8
from ldm.util import instantiate_from_config
from ldm.models.autoencoder import AutoencoderKL
from omegaconf import OmegaConf
comfyanonymous's avatar
comfyanonymous committed
9
10
11
from .cldm import cldm

from . import utils
comfyanonymous's avatar
comfyanonymous committed
12

13
def load_torch_file(ckpt):
comfyanonymous's avatar
comfyanonymous committed
14
15
16
17
18
19
20
    if ckpt.lower().endswith(".safetensors"):
        import safetensors.torch
        sd = safetensors.torch.load_file(ckpt, device="cpu")
    else:
        pl_sd = torch.load(ckpt, map_location="cpu")
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
21
22
23
24
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
25
26
27
28
29
30
    return sd

def load_model_from_config(config, ckpt, verbose=False, load_state_dict_to=[]):
    print(f"Loading model from {ckpt}")

    sd = load_torch_file(ckpt)
comfyanonymous's avatar
comfyanonymous committed
31
32
33
34
35
36
37
38
39
40
41
    model = instantiate_from_config(config.model)

    m, u = model.load_state_dict(sd, strict=False)

    k = list(sd.keys())
    for x in k:
        # print(x)
        if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
            y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
            sd[y] = sd.pop(x)

comfyanonymous's avatar
comfyanonymous committed
42
43
44
45
    if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in sd:
        ids = sd['cond_stage_model.transformer.text_model.embeddings.position_ids']
        if ids.dtype == torch.float32:
            sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    keys_to_replace = {
        "cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
        "cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
        "cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
        "cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
    }

    for x in keys_to_replace:
        if x in sd:
            sd[keys_to_replace[x]] = sd.pop(x)

    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(24):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
                k = "cond_stage_model.model.transformer.resblocks.{}.{}.{}".format(resblock, x, y)
                k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, resblock_to_replace[x], y)
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
            k_from = "cond_stage_model.model.transformer.resblocks.{}.attn.in_proj_{}".format(resblock, y)
            if k_from in sd:
                weights = sd.pop(k_from)
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
                    k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, p[x], y)
                    sd[k_to] = weights[1024*x:1024*(x + 1)]

comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
88
89
90
91
92
93
94
95
    for x in load_state_dict_to:
        x.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}

LORA_UNET_MAP = {
    "proj_in": "proj_in",
    "proj_out": "proj_out",
    "transformer_blocks.0.attn1.to_q": "transformer_blocks_0_attn1_to_q",
    "transformer_blocks.0.attn1.to_k": "transformer_blocks_0_attn1_to_k",
    "transformer_blocks.0.attn1.to_v": "transformer_blocks_0_attn1_to_v",
    "transformer_blocks.0.attn1.to_out.0": "transformer_blocks_0_attn1_to_out_0",
    "transformer_blocks.0.attn2.to_q": "transformer_blocks_0_attn2_to_q",
    "transformer_blocks.0.attn2.to_k": "transformer_blocks_0_attn2_to_k",
    "transformer_blocks.0.attn2.to_v": "transformer_blocks_0_attn2_to_v",
    "transformer_blocks.0.attn2.to_out.0": "transformer_blocks_0_attn2_to_out_0",
    "transformer_blocks.0.ff.net.0.proj": "transformer_blocks_0_ff_net_0_proj",
    "transformer_blocks.0.ff.net.2": "transformer_blocks_0_ff_net_2",
}


def load_lora(path, to_load):
    lora = load_torch_file(path)
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        A_name = "{}.lora_up.weight".format(x)
        B_name = "{}.lora_down.weight".format(x)
        alpha_name = "{}.alpha".format(x)
        if A_name in lora.keys():
            alpha = None
            if alpha_name in lora.keys():
                alpha = lora[alpha_name].item()
                loaded_keys.add(alpha_name)
            patch_dict[to_load[x]] = (lora[A_name], lora[B_name], alpha)
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)
    for x in lora.keys():
        if x not in loaded_keys:
            print("lora key not loaded", x)
    return patch_dict

def model_lora_keys(model, key_map={}):
    sdk = model.state_dict().keys()

    counter = 0
    for b in range(12):
        tk = "model.diffusion_model.input_blocks.{}.1".format(b)
        up_counter = 0
        for c in LORA_UNET_MAP:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP[c])
153
                key_map[lora_key] = k
154
155
156
157
158
159
160
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    for c in LORA_UNET_MAP:
        k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
        if k in sdk:
            lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP[c])
161
            key_map[lora_key] = k
162
163
164
165
166
167
168
169
    counter = 3
    for b in range(12):
        tk = "model.diffusion_model.output_blocks.{}.1".format(b)
        up_counter = 0
        for c in LORA_UNET_MAP:
            k = "{}.{}.weight".format(tk, c)
            if k in sdk:
                lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP[c])
170
                key_map[lora_key] = k
171
172
173
174
                up_counter += 1
        if up_counter >= 4:
            counter += 1
    counter = 0
comfyanonymous's avatar
comfyanonymous committed
175
    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
176
    for b in range(24):
177
178
179
        for c in LORA_CLIP_MAP:
            k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
comfyanonymous's avatar
comfyanonymous committed
180
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
181
                key_map[lora_key] = k
comfyanonymous's avatar
comfyanonymous committed
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    return key_map

class ModelPatcher:
    def __init__(self, model):
        self.model = model
        self.patches = []
        self.backup = {}

    def clone(self):
        n = ModelPatcher(self.model)
        n.patches = self.patches[:]
        return n

    def add_patches(self, patches, strength=1.0):
        p = {}
        model_sd = self.model.state_dict()
        for k in patches:
200
            if k in model_sd:
201
202
203
204
205
206
207
208
209
                p[k] = patches[k]
        self.patches += [(strength, p)]
        return p.keys()

    def patch_model(self):
        model_sd = self.model.state_dict()
        for p in self.patches:
            for k in p[1]:
                v = p[1][k]
210
                key = k
comfyanonymous's avatar
comfyanonymous committed
211
                if key not in model_sd:
212
213
214
                    print("could not patch. key doesn't exist in model:", k)
                    continue

comfyanonymous's avatar
comfyanonymous committed
215
216
217
                weight = model_sd[key]
                if key not in self.backup:
                    self.backup[key] = weight.clone()
218
219
220
221
222
223

                alpha = p[0]
                mat1 = v[0]
                mat2 = v[1]
                if v[2] is not None:
                    alpha *= v[2] / mat2.shape[0]
224
                weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        return self.model
    def unpatch_model(self):
        model_sd = self.model.state_dict()
        for k in self.backup:
            model_sd[k][:] = self.backup[k]
        self.backup = {}

def load_lora_for_models(model, clip, lora_path, strength_model, strength_clip):
    key_map = model_lora_keys(model.model)
    key_map = model_lora_keys(clip.cond_stage_model, key_map)
    loaded = load_lora(lora_path, key_map)
    new_modelpatcher = model.clone()
    k = new_modelpatcher.add_patches(loaded, strength_model)
    new_clip = clip.clone()
    k1 = new_clip.add_patches(loaded, strength_clip)
    k = set(k)
    k1 = set(k1)
    for x in loaded:
        if (x not in k) and (x not in k1):
            print("NOT LOADED", x)

    return (new_modelpatcher, new_clip)
comfyanonymous's avatar
comfyanonymous committed
247
248
249


class CLIP:
250
251
252
    def __init__(self, config={}, embedding_directory=None, no_init=False):
        if no_init:
            return
comfyanonymous's avatar
comfyanonymous committed
253
        self.target_clip = config["target"]
254
255
256
257
258
        if "params" in config:
            params = config["params"]
        else:
            params = {}

comfyanonymous's avatar
comfyanonymous committed
259
260
261
262
263
264
        if self.target_clip == "ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder":
            clip = sd2_clip.SD2ClipModel
            tokenizer = sd2_clip.SD2Tokenizer
        elif self.target_clip == "ldm.modules.encoders.modules.FrozenCLIPEmbedder":
            clip = sd1_clip.SD1ClipModel
            tokenizer = sd1_clip.SD1Tokenizer
265
266

        self.cond_stage_model = clip(**(params))
267
        self.tokenizer = tokenizer(embedding_directory=embedding_directory)
268
269
270
271
272
273
274
275
276
277
        self.patcher = ModelPatcher(self.cond_stage_model)

    def clone(self):
        n = CLIP(no_init=True)
        n.target_clip = self.target_clip
        n.patcher = self.patcher.clone()
        n.cond_stage_model = self.cond_stage_model
        n.tokenizer = self.tokenizer
        return n

278
279
280
    def load_from_state_dict(self, sd):
        self.cond_stage_model.transformer.load_state_dict(sd, strict=False)

281
282
    def add_patches(self, patches, strength=1.0):
        return self.patcher.add_patches(patches, strength)
comfyanonymous's avatar
comfyanonymous committed
283

284
285
286
    def clip_layer(self, layer_idx):
        return self.cond_stage_model.clip_layer(layer_idx)

comfyanonymous's avatar
comfyanonymous committed
287
288
    def encode(self, text):
        tokens = self.tokenizer.tokenize_with_weights(text)
289
290
291
292
293
294
295
        try:
            self.patcher.patch_model()
            cond = self.cond_stage_model.encode_token_weights(tokens)
            self.patcher.unpatch_model()
        except Exception as e:
            self.patcher.unpatch_model()
            raise e
comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        return cond

class VAE:
    def __init__(self, ckpt_path=None, scale_factor=0.18215, device="cuda", config=None):
        if config is None:
            #default SD1.x/SD2.x VAE parameters
            ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
            self.first_stage_model = AutoencoderKL(ddconfig, {'target': 'torch.nn.Identity'}, 4, monitor="val/rec_loss", ckpt_path=ckpt_path)
        else:
            self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
        self.first_stage_model = self.first_stage_model.eval()
        self.scale_factor = scale_factor
        self.device = device

    def decode(self, samples):
311
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
312
313
314
315
316
317
318
319
320
        self.first_stage_model = self.first_stage_model.to(self.device)
        samples = samples.to(self.device)
        pixel_samples = self.first_stage_model.decode(1. / self.scale_factor * samples)
        pixel_samples = torch.clamp((pixel_samples + 1.0) / 2.0, min=0.0, max=1.0)
        self.first_stage_model = self.first_stage_model.cpu()
        pixel_samples = pixel_samples.cpu().movedim(1,-1)
        return pixel_samples

    def encode(self, pixel_samples):
321
        model_management.unload_model()
comfyanonymous's avatar
comfyanonymous committed
322
323
324
325
326
327
328
        self.first_stage_model = self.first_stage_model.to(self.device)
        pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
        samples = self.first_stage_model.encode(2. * pixel_samples - 1.).sample() * self.scale_factor
        self.first_stage_model = self.first_stage_model.cpu()
        samples = samples.cpu()
        return samples

comfyanonymous's avatar
comfyanonymous committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
class ControlNet:
    def __init__(self, control_model):
        self.control_model = control_model
        self.cond_hint_original = None
        self.cond_hint = None

    def get_control(self, x_noisy, t, cond_txt):
        if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
            self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(x_noisy.device)
            print("set cond_hint", self.cond_hint.shape)
        control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
        return control

    def set_cond_hint(self, cond_hint):
        self.cond_hint_original = cond_hint
        return self

    def cleanup(self):
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None

    def copy(self):
        c = ControlNet(self.control_model)
        c.cond_hint_original = self.cond_hint_original
        return c

def load_controlnet(ckpt_path):
    controlnet_data = load_torch_file(ckpt_path)
    pth_key = 'control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    pth = False
    sd2 = False
    key = 'input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
    elif key in controlnet_data:
        pass
    else:
        print("error checkpoint does not contain controlnet data", ckpt_path)
        return None

    context_dim = controlnet_data[key].shape[1]
    control_model = cldm.ControlNet(image_size=32,
                                    in_channels=4,
                                    hint_channels=3,
                                    model_channels=320,
                                    attention_resolutions=[ 4, 2, 1 ],
                                    num_res_blocks=2,
                                    channel_mult=[ 1, 2, 4, 4 ],
                                    num_heads=8,
                                    use_spatial_transformer=True,
                                    transformer_depth=1,
                                    context_dim=context_dim,
                                    use_checkpoint=True,
                                    legacy=False)

    if pth:
        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        w.load_state_dict(controlnet_data, strict=False)
    else:
        control_model.load_state_dict(controlnet_data, strict=False)

    control = ControlNet(control_model)
    return control


402
403
404
405
406
407
408
409
410
411
def load_clip(ckpt_path, embedding_directory=None):
    clip_data = load_torch_file(ckpt_path)
    config = {}
    if "text_model.encoder.layers.22.mlp.fc1.weight" in clip_data:
        config['target'] = 'ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder'
    else:
        config['target'] = 'ldm.modules.encoders.modules.FrozenCLIPEmbedder'
    clip = CLIP(config=config, embedding_directory=embedding_directory)
    clip.load_from_state_dict(clip_data)
    return clip
comfyanonymous's avatar
comfyanonymous committed
412

413
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
comfyanonymous's avatar
comfyanonymous committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    config = OmegaConf.load(config_path)
    model_config_params = config['model']['params']
    clip_config = model_config_params['cond_stage_config']
    scale_factor = model_config_params['scale_factor']
    vae_config = model_config_params['first_stage_config']

    clip = None
    vae = None

    class WeightsLoader(torch.nn.Module):
        pass

    w = WeightsLoader()
    load_state_dict_to = []
    if output_vae:
        vae = VAE(scale_factor=scale_factor, config=vae_config)
        w.first_stage_model = vae.first_stage_model
        load_state_dict_to = [w]

    if output_clip:
434
        clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
435
436
437
438
        w.cond_stage_model = clip.cond_stage_model
        load_state_dict_to = [w]

    model = load_model_from_config(config, ckpt_path, verbose=False, load_state_dict_to=load_state_dict_to)
439
    return (ModelPatcher(model), clip, vae)