"src/vscode:/vscode.git/clone" did not exist on "20a6f4f5a0f753d279a94c01ba7d794e7893f621"
openaimodel.py 34.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
from abc import abstractmethod
import math

import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F

comfyanonymous's avatar
comfyanonymous committed
9
from .util import (
comfyanonymous's avatar
comfyanonymous committed
10
11
12
13
14
15
16
17
    checkpoint,
    conv_nd,
    linear,
    avg_pool_nd,
    zero_module,
    normalization,
    timestep_embedding,
)
comfyanonymous's avatar
comfyanonymous committed
18
19
from ..attention import SpatialTransformer
from comfy.ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


# dummy replace
def convert_module_to_f16(x):
    pass

def convert_module_to_f32(x):
    pass


## go
class AttentionPool2d(nn.Module):
    """
    Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
    """

    def __init__(
        self,
        spacial_dim: int,
        embed_dim: int,
        num_heads_channels: int,
        output_dim: int = None,
    ):
        super().__init__()
        self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
        self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
        self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
        self.num_heads = embed_dim // num_heads_channels
        self.attention = QKVAttention(self.num_heads)

    def forward(self, x):
        b, c, *_spatial = x.shape
        x = x.reshape(b, c, -1)  # NC(HW)
        x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
        x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
        x = self.qkv_proj(x)
        x = self.attention(x)
        x = self.c_proj(x)
        return x[:, :, 0]


class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

79
    def forward(self, x, emb, context=None, transformer_options={}, output_shape=None):
comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, SpatialTransformer):
84
                x = layer(x, context, transformer_options)
85
86
            elif isinstance(layer, Upsample):
                x = layer(x, output_shape=output_shape)
comfyanonymous's avatar
comfyanonymous committed
87
88
89
90
            else:
                x = layer(x)
        return x

91
92
93
94
95
96
97
98
99
100
101
102
103
#This is needed because accelerate makes a copy of transformer_options which breaks "current_index"
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None):
    for layer in ts:
        if isinstance(layer, TimestepBlock):
            x = layer(x, emb)
        elif isinstance(layer, SpatialTransformer):
            x = layer(x, context, transformer_options)
            transformer_options["current_index"] += 1
        elif isinstance(layer, Upsample):
            x = layer(x, output_shape=output_shape)
        else:
            x = layer(x)
    return x
comfyanonymous's avatar
comfyanonymous committed
104
105
106
107
108
109
110
111
112
113

class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

114
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None):
comfyanonymous's avatar
comfyanonymous committed
115
116
117
118
119
120
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
121
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
122

123
    def forward(self, x, output_shape=None):
comfyanonymous's avatar
comfyanonymous committed
124
125
        assert x.shape[1] == self.channels
        if self.dims == 3:
126
127
128
129
            shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
            if output_shape is not None:
                shape[1] = output_shape[3]
                shape[2] = output_shape[4]
comfyanonymous's avatar
comfyanonymous committed
130
        else:
131
132
133
134
135
136
            shape = [x.shape[2] * 2, x.shape[3] * 2]
            if output_shape is not None:
                shape[0] = output_shape[2]
                shape[1] = output_shape[3]

        x = F.interpolate(x, size=shape, mode="nearest")
comfyanonymous's avatar
comfyanonymous committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        if self.use_conv:
            x = self.conv(x)
        return x

class TransposedUpsample(nn.Module):
    'Learned 2x upsampling without padding'
    def __init__(self, channels, out_channels=None, ks=5):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels

        self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)

    def forward(self,x):
        return self.up(x)


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

163
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None):
comfyanonymous's avatar
comfyanonymous committed
164
165
166
167
168
169
170
171
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(
172
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
211
212
        dtype=None,
        device=None,
comfyanonymous's avatar
comfyanonymous committed
213
214
215
216
217
218
219
220
221
222
223
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        self.in_layers = nn.Sequential(
224
            nn.GroupNorm(32, channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
225
            nn.SiLU(),
226
            conv_nd(dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
227
228
229
230
231
        )

        self.updown = up or down

        if up:
232
233
            self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
234
        elif down:
235
236
            self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
237
238
239
240
241
242
243
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.emb_layers = nn.Sequential(
            nn.SiLU(),
            linear(
                emb_channels,
244
                2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
245
246
247
            ),
        )
        self.out_layers = nn.Sequential(
248
            nn.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
249
250
251
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
252
                conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
253
254
255
256
257
258
259
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(
260
                dims, channels, self.out_channels, 3, padding=1, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
261
262
            )
        else:
263
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(
            self._forward, (x, emb), self.parameters(), self.use_checkpoint
        )


    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = th.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.
    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        use_checkpoint=False,
        use_new_attention_order=False,
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint
        self.norm = normalization(channels)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        if use_new_attention_order:
            # split qkv before split heads
            self.attention = QKVAttention(self.num_heads)
        else:
            # split heads before split qkv
            self.attention = QKVAttentionLegacy(self.num_heads)

        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x):
        return checkpoint(self._forward, (x,), self.parameters(), True)   # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
        #return pt_checkpoint(self._forward, x)  # pytorch

    def _forward(self, x):
        b, c, *spatial = x.shape
        x = x.reshape(b, c, -1)
        qkv = self.qkv(self.norm(x))
        h = self.attention(qkv)
        h = self.proj_out(h)
        return (x + h).reshape(b, c, *spatial)


def count_flops_attn(model, _x, y):
    """
    A counter for the `thop` package to count the operations in an
    attention operation.
    Meant to be used like:
        macs, params = thop.profile(
            model,
            inputs=(inputs, timestamps),
            custom_ops={QKVAttention: QKVAttention.count_flops},
        )
    """
    b, c, *spatial = y[0].shape
    num_spatial = int(np.prod(spatial))
    # We perform two matmuls with the same number of ops.
    # The first computes the weight matrix, the second computes
    # the combination of the value vectors.
    matmul_ops = 2 * b * (num_spatial ** 2) * c
    model.total_ops += th.DoubleTensor([matmul_ops])


class QKVAttentionLegacy(nn.Module):
    """
    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
        Apply QKV attention.
        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
        :return: an [N x (H * C) x T] tensor after attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = th.einsum(
            "bct,bcs->bts", q * scale, k * scale
        )  # More stable with f16 than dividing afterwards
        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = th.einsum("bts,bcs->bct", weight, v)
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


class QKVAttention(nn.Module):
    """
    A module which performs QKV attention and splits in a different order.
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
        Apply QKV attention.
        :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
        :return: an [N x (H * C) x T] tensor after attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.chunk(3, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = th.einsum(
            "bct,bcs->bts",
            (q * scale).view(bs * self.n_heads, ch, length),
            (k * scale).view(bs * self.n_heads, ch, length),
        )  # More stable with f16 than dividing afterwards
        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


435
436
437
438
439
440
441
442
443
class Timestep(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        return timestep_embedding(t, self.dim)


comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param attention_resolutions: a collection of downsample rates at which
        attention will take place. May be a set, list, or tuple.
        For example, if this contains 4, then at 4x downsampling, attention
        will be used.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
        use_fp16=False,
489
        use_bf16=False,
comfyanonymous's avatar
comfyanonymous committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
505
        adm_in_channels=None,
506
        transformer_depth_middle=None,
507
        device=None,
comfyanonymous's avatar
comfyanonymous committed
508
509
510
511
512
513
514
    ):
        super().__init__()
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
515
516
517
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
532
533
534
535
        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        if transformer_depth_middle is None:
            transformer_depth_middle =  transformer_depth[-1]
comfyanonymous's avatar
comfyanonymous committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
            print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
                  f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
                  f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
                  f"attention will still not be set.")

        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.dtype = th.float16 if use_fp16 else th.float32
561
        self.dtype = th.bfloat16 if use_bf16 else self.dtype
comfyanonymous's avatar
comfyanonymous committed
562
563
564
565
566
567
568
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
569
            linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
570
            nn.SiLU(),
571
            linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
572
573
574
575
576
577
578
579
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
580
581
582
583
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
584
                        linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
585
                        nn.SiLU(),
586
                        linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
587
588
                    )
                )
comfyanonymous's avatar
comfyanonymous committed
589
590
591
592
593
594
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
595
                    conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
614
615
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
                        layers.append(
                            AttentionBlock(
                                ch,
                                use_checkpoint=use_checkpoint,
                                num_heads=num_heads,
                                num_head_channels=dim_head,
                                use_new_attention_order=use_new_attention_order,
                            ) if not use_spatial_transformer else SpatialTransformer(
642
                                ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
643
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
644
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
663
664
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
665
666
667
                        )
                        if resblock_updown
                        else Downsample(
668
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
693
694
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
695
696
697
698
699
700
701
702
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=dim_head,
                use_new_attention_order=use_new_attention_order,
            ) if not use_spatial_transformer else SpatialTransformer(  # always uses a self-attn
703
                            ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
704
                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
705
                            use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
706
707
708
709
710
711
712
713
                        ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
714
715
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
                    ResBlock(
                        ch + ich,
                        time_embed_dim,
                        dropout,
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
733
734
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
                    )
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
                        layers.append(
                            AttentionBlock(
                                ch,
                                use_checkpoint=use_checkpoint,
                                num_heads=num_heads_upsample,
                                num_head_channels=dim_head,
                                use_new_attention_order=use_new_attention_order,
                            ) if not use_spatial_transformer else SpatialTransformer(
761
                                ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
762
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
763
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
778
779
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
780
781
                        )
                        if resblock_updown
782
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
783
784
785
786
787
788
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
789
            nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
790
            nn.SiLU(),
791
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
comfyanonymous's avatar
comfyanonymous committed
792
793
794
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
795
796
            nn.GroupNorm(32, ch, dtype=self.dtype, device=device),
            conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
        )

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

816
    def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
817
818
819
820
821
822
823
824
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
825
        transformer_options["original_shape"] = list(x.shape)
826
827
        transformer_options["current_index"] = 0

comfyanonymous's avatar
comfyanonymous committed
828
829
830
831
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
832
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
comfyanonymous's avatar
comfyanonymous committed
833
834
835
836
837
838
839
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

        h = x.type(self.dtype)
comfyanonymous's avatar
comfyanonymous committed
840
        for id, module in enumerate(self.input_blocks):
841
            transformer_options["block"] = ("input", id)
842
            h = forward_timestep_embed(module, h, emb, context, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
843
844
845
846
            if control is not None and 'input' in control and len(control['input']) > 0:
                ctrl = control['input'].pop()
                if ctrl is not None:
                    h += ctrl
comfyanonymous's avatar
comfyanonymous committed
847
            hs.append(h)
848
        transformer_options["block"] = ("middle", 0)
849
        h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
850
851
        if control is not None and 'middle' in control and len(control['middle']) > 0:
            h += control['middle'].pop()
comfyanonymous's avatar
comfyanonymous committed
852

853
854
        for id, module in enumerate(self.output_blocks):
            transformer_options["block"] = ("output", id)
comfyanonymous's avatar
comfyanonymous committed
855
            hsp = hs.pop()
comfyanonymous's avatar
comfyanonymous committed
856
857
858
859
            if control is not None and 'output' in control and len(control['output']) > 0:
                ctrl = control['output'].pop()
                if ctrl is not None:
                    hsp += ctrl
860

comfyanonymous's avatar
comfyanonymous committed
861
            h = th.cat([h, hsp], dim=1)
comfyanonymous's avatar
comfyanonymous committed
862
            del hsp
863
864
865
866
            if len(hs) > 0:
                output_shape = hs[-1].shape
            else:
                output_shape = None
867
            h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape)
comfyanonymous's avatar
comfyanonymous committed
868
869
870
871
872
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)