supported_models.py 7.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
from . import model_base
from . import utils

from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip

from . import supported_models_base
10
from . import latent_formats
11

12
13
from . import diffusers_convert

14
15
16
17
18
19
20
21
22
23
24
25
26
class SD15(supported_models_base.BASE):
    unet_config = {
        "context_dim": 768,
        "model_channels": 320,
        "use_linear_in_transformer": False,
        "adm_in_channels": None,
    }

    unet_extra_config = {
        "num_heads": 8,
        "num_head_channels": -1,
    }

27
    latent_format = latent_formats.SD15
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

    def process_clip_state_dict(self, state_dict):
        k = list(state_dict.keys())
        for x in k:
            if x.startswith("cond_stage_model.transformer.") and not x.startswith("cond_stage_model.transformer.text_model."):
                y = x.replace("cond_stage_model.transformer.", "cond_stage_model.transformer.text_model.")
                state_dict[y] = state_dict.pop(x)

        if 'cond_stage_model.transformer.text_model.embeddings.position_ids' in state_dict:
            ids = state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids']
            if ids.dtype == torch.float32:
                state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()

        return state_dict

    def clip_target(self):
        return supported_models_base.ClipTarget(sd1_clip.SD1Tokenizer, sd1_clip.SD1ClipModel)

class SD20(supported_models_base.BASE):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": None,
    }

54
    latent_format = latent_formats.SD15
55

56
    def model_type(self, state_dict, prefix=""):
57
        if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
58
            k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix)
59
60
            out = state_dict[k]
            if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
61
62
                return model_base.ModelType.V_PREDICTION
        return model_base.ModelType.EPS
63
64
65
66
67

    def process_clip_state_dict(self, state_dict):
        state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.transformer.text_model.", 24)
        return state_dict

68
69
70
71
72
73
74
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        replace_prefix[""] = "cond_stage_model.model."
        state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
        state_dict = diffusers_convert.convert_text_enc_state_dict_v20(state_dict)
        return state_dict

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def clip_target(self):
        return supported_models_base.ClipTarget(sd2_clip.SD2Tokenizer, sd2_clip.SD2ClipModel)

class SD21UnclipL(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 1536,
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 768}


class SD21UnclipH(SD20):
    unet_config = {
        "context_dim": 1024,
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "adm_in_channels": 2048,
    }

    clip_vision_prefix = "embedder.model.visual."
    noise_aug_config = {"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1024}

class SDXLRefiner(supported_models_base.BASE):
    unet_config = {
        "model_channels": 384,
        "use_linear_in_transformer": True,
        "context_dim": 1280,
        "adm_in_channels": 2560,
        "transformer_depth": [0, 4, 4, 0],
    }

110
    latent_format = latent_formats.SDXL
111

112
    def get_model(self, state_dict, prefix=""):
113
        return model_base.SDXLRefiner(self)
114
115
116
117
118
119
120

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

        state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
        keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
121
        keys_to_replace["conditioner.embedders.0.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
122
123
124
125

        state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
        return state_dict

126
127
128
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
129
        state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
130
131
132
133
        replace_prefix["clip_g"] = "conditioner.embedders.0.model"
        state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix)
        return state_dict_g

134
135
136
137
138
139
140
141
142
143
144
145
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLRefinerClipModel)

class SDXL(supported_models_base.BASE):
    unet_config = {
        "model_channels": 320,
        "use_linear_in_transformer": True,
        "transformer_depth": [0, 2, 10],
        "context_dim": 2048,
        "adm_in_channels": 2816
    }

146
    latent_format = latent_formats.SDXL
147

148
149
150
151
152
153
    def model_type(self, state_dict, prefix=""):
        if "v_pred" in state_dict:
            return model_base.ModelType.V_PREDICTION
        else:
            return model_base.ModelType.EPS

154
    def get_model(self, state_dict, prefix=""):
155
        return model_base.SDXL(self, model_type=self.model_type(state_dict, prefix))
156
157
158
159
160
161
162
163

    def process_clip_state_dict(self, state_dict):
        keys_to_replace = {}
        replace_prefix = {}

        replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
        state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
        keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
164
        keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
165
166
167
168
169

        state_dict = supported_models_base.state_dict_prefix_replace(state_dict, replace_prefix)
        state_dict = supported_models_base.state_dict_key_replace(state_dict, keys_to_replace)
        return state_dict

170
171
172
173
    def process_clip_state_dict_for_saving(self, state_dict):
        replace_prefix = {}
        keys_to_replace = {}
        state_dict_g = diffusers_convert.convert_text_enc_state_dict_v20(state_dict, "clip_g")
174
        state_dict_g.pop("clip_g.transformer.text_model.embeddings.position_ids")
175
176
177
178
179
180
181
182
183
        for k in state_dict:
            if k.startswith("clip_l"):
                state_dict_g[k] = state_dict[k]

        replace_prefix["clip_g"] = "conditioner.embedders.1.model"
        replace_prefix["clip_l"] = "conditioner.embedders.0"
        state_dict_g = supported_models_base.state_dict_prefix_replace(state_dict_g, replace_prefix)
        return state_dict_g

184
185
186
187
188
    def clip_target(self):
        return supported_models_base.ClipTarget(sdxl_clip.SDXLTokenizer, sdxl_clip.SDXLClipModel)


models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL]