sample.py 4.19 KB
Newer Older
1
2
import torch
import comfy.model_management
3
import comfy.samplers
4
import math
5
import numpy as np
6

7
def prepare_noise(latent_image, seed, noise_inds=None):
8
9
10
11
    """
    creates random noise given a latent image and a seed.
    optional arg skip can be used to skip and discard x number of noise generations for a given seed
    """
BlenderNeko's avatar
BlenderNeko committed
12
    generator = torch.manual_seed(seed)
13
14
15
16
17
18
    if noise_inds is None:
        return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
    
    unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
    noises = []
    for i in range(unique_inds[-1]+1):
BlenderNeko's avatar
BlenderNeko committed
19
        noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
20
21
22
23
24
        if i in unique_inds:
            noises.append(noise)
    noises = [noises[i] for i in inverse]
    noises = torch.cat(noises, axis=0)
    return noises
25

26
def prepare_mask(noise_mask, shape, device):
27
    """ensures noise mask is of proper dimensions"""
28
    noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
29
    noise_mask = noise_mask.round()
30
    noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
31
32
    if noise_mask.shape[0] < shape[0]:
        noise_mask = noise_mask.repeat(math.ceil(shape[0] / noise_mask.shape[0]), 1, 1, 1)[:shape[0]]
33
    noise_mask = noise_mask.to(device)
34
35
    return noise_mask

36
37
def broadcast_cond(cond, batch, device):
    """broadcasts conditioning to the batch size"""
38
39
40
    copy = []
    for p in cond:
        t = p[0]
41
42
        if t.shape[0] < batch:
            t = torch.cat([t] * batch)
43
44
45
46
        t = t.to(device)
        copy += [[t] + p[1:]]
    return copy

47
48
49
50
51
52
def get_models_from_cond(cond, model_type):
    models = []
    for c in cond:
        if model_type in c[1]:
            models += [c[1][model_type]]
    return models
53

54
def get_additional_models(positive, negative, dtype):
BlenderNeko's avatar
BlenderNeko committed
55
    """loads additional models in positive and negative conditioning"""
56
    control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
comfyanonymous's avatar
comfyanonymous committed
57

58
    inference_memory = 0
comfyanonymous's avatar
comfyanonymous committed
59
60
61
    control_models = []
    for m in control_nets:
        control_models += m.get_models()
62
        inference_memory += m.inference_memory_requirements(dtype)
comfyanonymous's avatar
comfyanonymous committed
63

BlenderNeko's avatar
BlenderNeko committed
64
    gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
comfyanonymous's avatar
comfyanonymous committed
65
66
    gligen = [x[1] for x in gligen]
    models = control_models + gligen
67
    return models, inference_memory
68
69

def cleanup_additional_models(models):
BlenderNeko's avatar
BlenderNeko committed
70
    """cleanup additional models that were loaded"""
71
    for m in models:
comfyanonymous's avatar
comfyanonymous committed
72
73
        if hasattr(m, 'cleanup'):
            m.cleanup()
74

75
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
76
77
78
79
80
81
    device = comfy.model_management.get_torch_device()

    if noise_mask is not None:
        noise_mask = prepare_mask(noise_mask, noise.shape, device)

    real_model = None
82
83
    models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
    comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory)
84
85
86
87
88
89
90
91
92
93
94
    real_model = model.model

    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = broadcast_cond(positive, noise.shape[0], device)
    negative_copy = broadcast_cond(negative, noise.shape[0], device)


    sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)

95
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
96
97
98
99
    samples = samples.cpu()

    cleanup_additional_models(models)
    return samples