"examples/trials/weight_sharing/ga_squad/evaluate.py" did not exist on "241e3254f557db07bd0baa0c8dc491b4598d29c9"
openaimodel.py 35.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
from abc import abstractmethod
import math

import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
comfyanonymous's avatar
comfyanonymous committed
8
9
from einops import rearrange
from functools import partial
comfyanonymous's avatar
comfyanonymous committed
10

comfyanonymous's avatar
comfyanonymous committed
11
from .util import (
comfyanonymous's avatar
comfyanonymous committed
12
13
14
15
16
    checkpoint,
    avg_pool_nd,
    zero_module,
    normalization,
    timestep_embedding,
comfyanonymous's avatar
comfyanonymous committed
17
    AlphaBlender,
comfyanonymous's avatar
comfyanonymous committed
18
)
comfyanonymous's avatar
comfyanonymous committed
19
from ..attention import SpatialTransformer, SpatialVideoTransformer, default
comfyanonymous's avatar
comfyanonymous committed
20
from comfy.ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
21
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
22
23
24
25
26
27
28
29
30
31
32
33

class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """

34
#This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
comfyanonymous's avatar
comfyanonymous committed
35
def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
36
    for layer in ts:
comfyanonymous's avatar
comfyanonymous committed
37
38
39
        if isinstance(layer, VideoResBlock):
            x = layer(x, emb, num_video_frames, image_only_indicator)
        elif isinstance(layer, TimestepBlock):
40
            x = layer(x, emb)
comfyanonymous's avatar
comfyanonymous committed
41
42
        elif isinstance(layer, SpatialVideoTransformer):
            x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
43
44
            if "transformer_index" in transformer_options:
                transformer_options["transformer_index"] += 1
45
46
        elif isinstance(layer, SpatialTransformer):
            x = layer(x, context, transformer_options)
47
48
            if "transformer_index" in transformer_options:
                transformer_options["transformer_index"] += 1
49
50
51
52
53
        elif isinstance(layer, Upsample):
            x = layer(x, output_shape=output_shape)
        else:
            x = layer(x)
    return x
comfyanonymous's avatar
comfyanonymous committed
54

comfyanonymous's avatar
comfyanonymous committed
55
56
57
58
59
60
61
62
63
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, *args, **kwargs):
        return forward_timestep_embed(self, *args, **kwargs)

comfyanonymous's avatar
comfyanonymous committed
64
65
66
67
68
69
70
71
72
class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
73
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
74
75
76
77
78
79
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
80
            self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
81

82
    def forward(self, x, output_shape=None):
comfyanonymous's avatar
comfyanonymous committed
83
84
        assert x.shape[1] == self.channels
        if self.dims == 3:
85
86
87
88
            shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
            if output_shape is not None:
                shape[1] = output_shape[3]
                shape[2] = output_shape[4]
comfyanonymous's avatar
comfyanonymous committed
89
        else:
90
91
92
93
94
95
            shape = [x.shape[2] * 2, x.shape[3] * 2]
            if output_shape is not None:
                shape[0] = output_shape[2]
                shape[1] = output_shape[3]

        x = F.interpolate(x, size=shape, mode="nearest")
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
101
102
103
104
105
106
107
108
        if self.use_conv:
            x = self.conv(x)
        return x

class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

comfyanonymous's avatar
comfyanonymous committed
109
    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=comfy.ops):
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
comfyanonymous's avatar
comfyanonymous committed
117
            self.op = operations.conv_nd(
118
                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
comfyanonymous's avatar
comfyanonymous committed
157
158
159
        kernel_size=3,
        exchange_temb_dims=False,
        skip_t_emb=False,
160
161
        dtype=None,
        device=None,
comfyanonymous's avatar
comfyanonymous committed
162
        operations=comfy.ops
comfyanonymous's avatar
comfyanonymous committed
163
164
165
166
167
168
169
170
171
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm
comfyanonymous's avatar
comfyanonymous committed
172
173
174
175
176
177
        self.exchange_temb_dims = exchange_temb_dims

        if isinstance(kernel_size, list):
            padding = [k // 2 for k in kernel_size]
        else:
            padding = kernel_size // 2
comfyanonymous's avatar
comfyanonymous committed
178
179

        self.in_layers = nn.Sequential(
180
            operations.GroupNorm(32, channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
181
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
182
            operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
183
184
185
186
187
        )

        self.updown = up or down

        if up:
188
189
            self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
190
        elif down:
191
192
            self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
            self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
193
194
195
        else:
            self.h_upd = self.x_upd = nn.Identity()

comfyanonymous's avatar
comfyanonymous committed
196
197
198
199
200
201
202
203
204
205
206
207
        self.skip_t_emb = skip_t_emb
        if self.skip_t_emb:
            self.emb_layers = None
            self.exchange_temb_dims = False
        else:
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                operations.Linear(
                    emb_channels,
                    2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
                ),
            )
comfyanonymous's avatar
comfyanonymous committed
208
        self.out_layers = nn.Sequential(
209
            operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
210
211
            nn.SiLU(),
            nn.Dropout(p=dropout),
212
213
            operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
            ,
comfyanonymous's avatar
comfyanonymous committed
214
215
216
217
218
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
comfyanonymous's avatar
comfyanonymous committed
219
            self.skip_connection = operations.conv_nd(
comfyanonymous's avatar
comfyanonymous committed
220
                dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
comfyanonymous's avatar
comfyanonymous committed
221
222
            )
        else:
comfyanonymous's avatar
comfyanonymous committed
223
            self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(
            self._forward, (x, emb), self.parameters(), self.use_checkpoint
        )


    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)
comfyanonymous's avatar
comfyanonymous committed
246
247
248
249
250
251

        emb_out = None
        if not self.skip_t_emb:
            emb_out = self.emb_layers(emb).type(h.dtype)
            while len(emb_out.shape) < len(h.shape):
                emb_out = emb_out[..., None]
comfyanonymous's avatar
comfyanonymous committed
252
253
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
comfyanonymous's avatar
comfyanonymous committed
254
255
256
257
258
            h = out_norm(h)
            if emb_out is not None:
                scale, shift = th.chunk(emb_out, 2, dim=1)
                h *= (1 + scale)
                h += shift
comfyanonymous's avatar
comfyanonymous committed
259
260
            h = out_rest(h)
        else:
comfyanonymous's avatar
comfyanonymous committed
261
262
263
264
            if emb_out is not None:
                if self.exchange_temb_dims:
                    emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
                h = h + emb_out
comfyanonymous's avatar
comfyanonymous committed
265
266
267
            h = self.out_layers(h)
        return self.skip_connection(x) + h

comfyanonymous's avatar
comfyanonymous committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

class VideoResBlock(ResBlock):
    def __init__(
        self,
        channels: int,
        emb_channels: int,
        dropout: float,
        video_kernel_size=3,
        merge_strategy: str = "fixed",
        merge_factor: float = 0.5,
        out_channels=None,
        use_conv: bool = False,
        use_scale_shift_norm: bool = False,
        dims: int = 2,
        use_checkpoint: bool = False,
        up: bool = False,
        down: bool = False,
        dtype=None,
        device=None,
        operations=comfy.ops
    ):
        super().__init__(
            channels,
            emb_channels,
            dropout,
            out_channels=out_channels,
            use_conv=use_conv,
            use_scale_shift_norm=use_scale_shift_norm,
            dims=dims,
            use_checkpoint=use_checkpoint,
            up=up,
            down=down,
            dtype=dtype,
            device=device,
            operations=operations
        )

        self.time_stack = ResBlock(
            default(out_channels, channels),
            emb_channels,
            dropout=dropout,
            dims=3,
            out_channels=default(out_channels, channels),
            use_scale_shift_norm=False,
            use_conv=False,
            up=False,
            down=False,
            kernel_size=video_kernel_size,
            use_checkpoint=use_checkpoint,
            exchange_temb_dims=True,
            dtype=dtype,
            device=device,
            operations=operations
        )
        self.time_mixer = AlphaBlender(
            alpha=merge_factor,
            merge_strategy=merge_strategy,
            rearrange_pattern="b t -> b 1 t 1 1",
        )

    def forward(
        self,
        x: th.Tensor,
        emb: th.Tensor,
        num_video_frames: int,
        image_only_indicator = None,
    ) -> th.Tensor:
        x = super().forward(x, emb)

        x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)

        x = self.time_stack(
            x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
        )
        x = self.time_mixer(
            x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
        )
        x = rearrange(x, "b c t h w -> (b t) c h w")
        return x


350
351
352
353
354
355
356
357
class Timestep(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        return timestep_embedding(t, self.dim)

comfyanonymous's avatar
comfyanonymous committed
358
359
360
361
def apply_control(h, control, name):
    if control is not None and name in control and len(control[name]) > 0:
        ctrl = control[name].pop()
        if ctrl is not None:
362
363
364
365
            try:
                h += ctrl
            except:
                print("warning control could not be applied", h.shape, ctrl.shape)
comfyanonymous's avatar
comfyanonymous committed
366
    return h
367

comfyanonymous's avatar
comfyanonymous committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
407
        dtype=th.float32,
comfyanonymous's avatar
comfyanonymous committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
423
        adm_in_channels=None,
424
        transformer_depth_middle=None,
425
        transformer_depth_output=None,
comfyanonymous's avatar
comfyanonymous committed
426
427
428
429
430
431
432
433
434
435
        use_temporal_resblock=False,
        use_temporal_attention=False,
        time_context_dim=None,
        extra_ff_mix_layer=False,
        use_spatial_context=False,
        merge_strategy=None,
        merge_factor=0.0,
        video_kernel_size=None,
        disable_temporal_crossattention=False,
        max_ddpm_temb_period=10000,
436
        device=None,
comfyanonymous's avatar
comfyanonymous committed
437
        operations=comfy.ops,
comfyanonymous's avatar
comfyanonymous committed
438
439
    ):
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
440
        assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
comfyanonymous's avatar
comfyanonymous committed
441
442
443
444
445
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
446
447
448
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
449
450
451
452
453
454
455
456
457
458
459
460
461
462

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
463

comfyanonymous's avatar
comfyanonymous committed
464
465
466
467
468
469
470
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
471

comfyanonymous's avatar
comfyanonymous committed
472
473
474
475
476
477
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)

478
479
480
        transformer_depth = transformer_depth[:]
        transformer_depth_output = transformer_depth_output[:]

comfyanonymous's avatar
comfyanonymous committed
481
482
483
484
485
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
486
        self.dtype = dtype
comfyanonymous's avatar
comfyanonymous committed
487
488
489
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
comfyanonymous's avatar
comfyanonymous committed
490
        self.use_temporal_resblocks = use_temporal_resblock
comfyanonymous's avatar
comfyanonymous committed
491
492
        self.predict_codebook_ids = n_embed is not None

comfyanonymous's avatar
comfyanonymous committed
493
494
495
        self.default_num_video_frames = None
        self.default_image_only_indicator = None

comfyanonymous's avatar
comfyanonymous committed
496
497
        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
498
            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
499
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
500
            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
501
502
503
504
505
506
507
508
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
509
510
511
512
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
513
                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
514
                        nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
515
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
516
517
                    )
                )
comfyanonymous's avatar
comfyanonymous committed
518
519
520
521
522
523
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
524
                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
525
526
527
528
529
530
531
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
comfyanonymous's avatar
comfyanonymous committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

        def get_attention_layer(
            ch,
            num_heads,
            dim_head,
            depth=1,
            context_dim=None,
            use_checkpoint=False,
            disable_self_attn=False,
        ):
            if use_temporal_attention:
                return SpatialVideoTransformer(
                    ch,
                    num_heads,
                    dim_head,
                    depth=depth,
                    context_dim=context_dim,
                    time_context_dim=time_context_dim,
                    dropout=dropout,
                    ff_in=extra_ff_mix_layer,
                    use_spatial_context=use_spatial_context,
                    merge_strategy=merge_strategy,
                    merge_factor=merge_factor,
                    checkpoint=use_checkpoint,
                    use_linear=use_linear_in_transformer,
                    disable_self_attn=disable_self_attn,
                    disable_temporal_crossattention=disable_temporal_crossattention,
                    max_time_embed_period=max_ddpm_temb_period,
                    dtype=self.dtype, device=device, operations=operations
                )
            else:
                return SpatialTransformer(
                                ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
                                disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
                            )

        def get_resblock(
            merge_factor,
            merge_strategy,
            video_kernel_size,
            ch,
            time_embed_dim,
            dropout,
            out_channels,
            dims,
            use_checkpoint,
            use_scale_shift_norm,
            down=False,
            up=False,
            dtype=None,
            device=None,
            operations=comfy.ops
        ):
            if self.use_temporal_resblocks:
                return VideoResBlock(
                    merge_factor=merge_factor,
                    merge_strategy=merge_strategy,
                    video_kernel_size=video_kernel_size,
                    channels=ch,
                    emb_channels=time_embed_dim,
                    dropout=dropout,
                    out_channels=out_channels,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                    down=down,
                    up=up,
                    dtype=dtype,
                    device=device,
                    operations=operations
                )
            else:
                return ResBlock(
                    channels=ch,
                    emb_channels=time_embed_dim,
                    dropout=dropout,
                    out_channels=out_channels,
                    use_checkpoint=use_checkpoint,
                    dims=dims,
                    use_scale_shift_norm=use_scale_shift_norm,
                    down=down,
                    up=up,
                    dtype=dtype,
                    device=device,
                    operations=operations
                )

comfyanonymous's avatar
comfyanonymous committed
620
621
622
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
comfyanonymous's avatar
comfyanonymous committed
623
624
625
626
627
628
629
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
630
631
632
633
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
634
635
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
636
                        operations=operations,
comfyanonymous's avatar
comfyanonymous committed
637
638
639
                    )
                ]
                ch = mult * model_channels
640
641
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
comfyanonymous's avatar
comfyanonymous committed
656
                        layers.append(get_attention_layer(
657
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
658
                                disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
comfyanonymous's avatar
comfyanonymous committed
659
660
661
662
663
664
665
666
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
667
668
669
670
671
672
673
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
674
675
676
677
678
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
679
680
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
681
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
682
683
684
                        )
                        if resblock_updown
                        else Downsample(
comfyanonymous's avatar
comfyanonymous committed
685
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
702
        mid_block = [
comfyanonymous's avatar
comfyanonymous committed
703
704
705
706
707
708
709
710
            get_resblock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                ch=ch,
                time_embed_dim=time_embed_dim,
                dropout=dropout,
                out_channels=None,
comfyanonymous's avatar
comfyanonymous committed
711
712
713
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
714
715
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
716
                operations=operations
717
718
            )]
        if transformer_depth_middle >= 0:
comfyanonymous's avatar
comfyanonymous committed
719
            mid_block += [get_attention_layer(  # always uses a self-attn
720
                            ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
721
                            disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
comfyanonymous's avatar
comfyanonymous committed
722
                        ),
comfyanonymous's avatar
comfyanonymous committed
723
724
725
726
727
728
729
730
            get_resblock(
                merge_factor=merge_factor,
                merge_strategy=merge_strategy,
                video_kernel_size=video_kernel_size,
                ch=ch,
                time_embed_dim=time_embed_dim,
                dropout=dropout,
                out_channels=None,
comfyanonymous's avatar
comfyanonymous committed
731
732
733
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
734
735
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
736
                operations=operations
737
738
            )]
        self.middle_block = TimestepEmbedSequential(*mid_block)
comfyanonymous's avatar
comfyanonymous committed
739
740
741
742
743
744
745
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
comfyanonymous's avatar
comfyanonymous committed
746
747
748
749
750
751
752
                    get_resblock(
                        merge_factor=merge_factor,
                        merge_strategy=merge_strategy,
                        video_kernel_size=video_kernel_size,
                        ch=ch + ich,
                        time_embed_dim=time_embed_dim,
                        dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
753
754
755
756
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
757
758
                        dtype=self.dtype,
                        device=device,
comfyanonymous's avatar
comfyanonymous committed
759
                        operations=operations
comfyanonymous's avatar
comfyanonymous committed
760
761
762
                    )
                ]
                ch = model_channels * mult
763
764
                num_transformers = transformer_depth_output.pop()
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
                        layers.append(
comfyanonymous's avatar
comfyanonymous committed
780
                            get_attention_layer(
781
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
782
                                disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
comfyanonymous's avatar
comfyanonymous committed
783
784
785
786
787
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
comfyanonymous's avatar
comfyanonymous committed
788
789
790
791
792
793
794
                        get_resblock(
                            merge_factor=merge_factor,
                            merge_strategy=merge_strategy,
                            video_kernel_size=video_kernel_size,
                            ch=ch,
                            time_embed_dim=time_embed_dim,
                            dropout=dropout,
comfyanonymous's avatar
comfyanonymous committed
795
796
797
798
799
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            up=True,
800
801
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
802
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
803
804
                        )
                        if resblock_updown
comfyanonymous's avatar
comfyanonymous committed
805
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
806
807
808
809
810
811
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = nn.Sequential(
812
            operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
813
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
814
            zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
comfyanonymous's avatar
comfyanonymous committed
815
816
817
        )
        if self.predict_codebook_ids:
            self.id_predictor = nn.Sequential(
818
            operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
819
            operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
820
821
822
            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
        )

823
    def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
comfyanonymous's avatar
comfyanonymous committed
824
825
826
827
828
829
830
831
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
832
        transformer_options["original_shape"] = list(x.shape)
833
        transformer_options["transformer_index"] = 0
834
        transformer_patches = transformer_options.get("patches", {})
835

comfyanonymous's avatar
comfyanonymous committed
836
837
838
839
        num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
        image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
        time_context = kwargs.get("time_context", None)

comfyanonymous's avatar
comfyanonymous committed
840
841
842
843
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
844
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
comfyanonymous's avatar
comfyanonymous committed
845
846
847
848
849
850
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

851
        h = x
comfyanonymous's avatar
comfyanonymous committed
852
        for id, module in enumerate(self.input_blocks):
853
            transformer_options["block"] = ("input", id)
comfyanonymous's avatar
comfyanonymous committed
854
            h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
855
            h = apply_control(h, control, 'input')
856
857
858
859
860
            if "input_block_patch" in transformer_patches:
                patch = transformer_patches["input_block_patch"]
                for p in patch:
                    h = p(h, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
861
            hs.append(h)
862
863
864
865
            if "input_block_patch_after_skip" in transformer_patches:
                patch = transformer_patches["input_block_patch_after_skip"]
                for p in patch:
                    h = p(h, transformer_options)
comfyanonymous's avatar
comfyanonymous committed
866

867
        transformer_options["block"] = ("middle", 0)
comfyanonymous's avatar
comfyanonymous committed
868
        h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
869
        h = apply_control(h, control, 'middle')
comfyanonymous's avatar
comfyanonymous committed
870

comfyanonymous's avatar
comfyanonymous committed
871

872
873
        for id, module in enumerate(self.output_blocks):
            transformer_options["block"] = ("output", id)
comfyanonymous's avatar
comfyanonymous committed
874
            hsp = hs.pop()
comfyanonymous's avatar
comfyanonymous committed
875
            hsp = apply_control(hsp, control, 'output')
876

877
878
879
880
881
            if "output_block_patch" in transformer_patches:
                patch = transformer_patches["output_block_patch"]
                for p in patch:
                    h, hsp = p(h, hsp, transformer_options)

comfyanonymous's avatar
comfyanonymous committed
882
            h = th.cat([h, hsp], dim=1)
comfyanonymous's avatar
comfyanonymous committed
883
            del hsp
884
885
886
887
            if len(hs) > 0:
                output_shape = hs[-1].shape
            else:
                output_shape = None
comfyanonymous's avatar
comfyanonymous committed
888
            h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
comfyanonymous's avatar
comfyanonymous committed
889
890
891
892
893
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)