sampler.py 2.96 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
9
10
11
12
13
"""SAMPLING ONLY."""
import torch

from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver


MODEL_TYPES = {
    "eps": "noise",
    "v": "v"
}


class DPMSolverSampler(object):
14
    def __init__(self, model, device=torch.device("cuda"), **kwargs):
comfyanonymous's avatar
comfyanonymous committed
15
16
        super().__init__()
        self.model = model
17
        self.device = device
comfyanonymous's avatar
comfyanonymous committed
18
19
20
21
22
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
        self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
23
24
            if attr.device != self.device:
                attr = attr.to(self.device)
comfyanonymous's avatar
comfyanonymous committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        setattr(self, name, attr)

    @torch.no_grad()
    def sample(self,
               S,
               batch_size,
               shape,
               conditioning=None,
               callback=None,
               normals_sequence=None,
               img_callback=None,
               quantize_x0=False,
               eta=0.,
               mask=None,
               x0=None,
               temperature=1.,
               noise_dropout=0.,
               score_corrector=None,
               corrector_kwargs=None,
               verbose=True,
               x_T=None,
               log_every_t=100,
               unconditional_guidance_scale=1.,
               unconditional_conditioning=None,
               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
               **kwargs
               ):
        if conditioning is not None:
            if isinstance(conditioning, dict):
                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
                if cbs != batch_size:
                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
            else:
                if conditioning.shape[0] != batch_size:
                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

        # sampling
        C, H, W = shape
        size = (batch_size, C, H, W)

        print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')

        device = self.model.betas.device
        if x_T is None:
            img = torch.randn(size, device=device)
        else:
            img = x_T

        ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)

        model_fn = model_wrapper(
            lambda x, t, c: self.model.apply_model(x, t, c),
            ns,
            model_type=MODEL_TYPES[self.model.parameterization],
            guidance_type="classifier-free",
            condition=conditioning,
            unconditional_condition=unconditional_conditioning,
            guidance_scale=unconditional_guidance_scale,
        )

        dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
        x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)

        return x.to(device), None