controlnet.py 21.4 KB
Newer Older
1
2
import torch
import math
3
import os
4
5
6
import comfy.utils
import comfy.model_management
import comfy.model_detection
7
import comfy.model_patcher
8
import comfy.ops
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

import comfy.cldm.cldm
import comfy.t2i_adapter.adapter


def broadcast_image_to(tensor, target_batch_size, batched_number):
    current_batch_size = tensor.shape[0]
    #print(current_batch_size, target_batch_size)
    if current_batch_size == 1:
        return tensor

    per_batch = target_batch_size // batched_number
    tensor = tensor[:per_batch]

    if per_batch > tensor.shape[0]:
        tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)

    current_batch_size = tensor.shape[0]
    if current_batch_size == target_batch_size:
        return tensor
    else:
        return torch.cat([tensor] * batched_number, dim=0)

class ControlBase:
    def __init__(self, device=None):
        self.cond_hint_original = None
        self.cond_hint = None
        self.strength = 1.0
37
        self.timestep_percent_range = (0.0, 1.0)
38
        self.global_average_pooling = False
39
        self.timestep_range = None
40
        self.compression_ratio = 8
41
42
43
44
45
46

        if device is None:
            device = comfy.model_management.get_torch_device()
        self.device = device
        self.previous_controlnet = None

47
    def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        self.cond_hint_original = cond_hint
        self.strength = strength
        self.timestep_percent_range = timestep_percent_range
        return self

    def pre_run(self, model, percent_to_timestep_function):
        self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
        if self.previous_controlnet is not None:
            self.previous_controlnet.pre_run(model, percent_to_timestep_function)

    def set_previous_controlnet(self, controlnet):
        self.previous_controlnet = controlnet
        return self

    def cleanup(self):
        if self.previous_controlnet is not None:
            self.previous_controlnet.cleanup()
        if self.cond_hint is not None:
            del self.cond_hint
            self.cond_hint = None
        self.timestep_range = None

    def get_models(self):
        out = []
        if self.previous_controlnet is not None:
            out += self.previous_controlnet.get_models()
        return out

    def copy_to(self, c):
        c.cond_hint_original = self.cond_hint_original
        c.strength = self.strength
        c.timestep_percent_range = self.timestep_percent_range
80
        c.global_average_pooling = self.global_average_pooling
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

    def inference_memory_requirements(self, dtype):
        if self.previous_controlnet is not None:
            return self.previous_controlnet.inference_memory_requirements(dtype)
        return 0

    def control_merge(self, control_input, control_output, control_prev, output_dtype):
        out = {'input':[], 'middle':[], 'output': []}

        if control_input is not None:
            for i in range(len(control_input)):
                key = 'input'
                x = control_input[i]
                if x is not None:
                    x *= self.strength
                    if x.dtype != output_dtype:
                        x = x.to(output_dtype)
                out[key].insert(0, x)

        if control_output is not None:
            for i in range(len(control_output)):
                if i == (len(control_output) - 1):
                    key = 'middle'
                    index = 0
                else:
                    key = 'output'
                    index = i
                x = control_output[i]
                if x is not None:
                    if self.global_average_pooling:
                        x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])

                    x *= self.strength
                    if x.dtype != output_dtype:
                        x = x.to(output_dtype)

                out[key].append(x)
        if control_prev is not None:
            for x in ['input', 'middle', 'output']:
                o = out[x]
                for i in range(len(control_prev[x])):
                    prev_val = control_prev[x][i]
                    if i >= len(o):
                        o.append(prev_val)
                    elif prev_val is not None:
                        if o[i] is None:
                            o[i] = prev_val
                        else:
129
130
131
132
                            if o[i].shape[0] < prev_val.shape[0]:
                                o[i] = prev_val + o[i]
                            else:
                                o[i] += prev_val
133
134
135
        return out

class ControlNet(ControlBase):
136
    def __init__(self, control_model, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None):
137
138
        super().__init__(device)
        self.control_model = control_model
139
140
        self.load_device = load_device
        self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
141
        self.global_average_pooling = global_average_pooling
142
        self.model_sampling_current = None
143
        self.manual_cast_dtype = manual_cast_dtype
144
145
146
147
148
149
150
151
152
153
154

    def get_control(self, x_noisy, t, cond, batched_number):
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
comfyanonymous's avatar
comfyanonymous committed
155
                    return None
156

157
        dtype = self.control_model.dtype
158
159
        if self.manual_cast_dtype is not None:
            dtype = self.manual_cast_dtype
160

161
        output_dtype = x_noisy.dtype
162
        if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
163
164
165
            if self.cond_hint is not None:
                del self.cond_hint
            self.cond_hint = None
166
            self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio, 'nearest-exact', "center").to(dtype).to(self.device)
167
168
169
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)

170
        context = cond.get('crossattn_controlnet', cond['c_crossattn'])
171
        y = cond.get('y', None)
172
        if y is not None:
173
            y = y.to(dtype)
174
175
176
        timestep = self.model_sampling_current.timestep(t)
        x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)

177
        control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
178
179
180
        return self.control_merge(None, control, control_prev, output_dtype)

    def copy(self):
181
        c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
182
183
184
185
186
187
188
189
        self.copy_to(c)
        return c

    def get_models(self):
        out = super().get_models()
        out.append(self.control_model_wrapped)
        return out

190
191
192
193
194
195
196
197
    def pre_run(self, model, percent_to_timestep_function):
        super().pre_run(model, percent_to_timestep_function)
        self.model_sampling_current = model.model_sampling

    def cleanup(self):
        self.model_sampling_current = None
        super().cleanup()

198
199
200
201
202
203
204
205
206
207
208
209
210
211
class ControlLoraOps:
    class Linear(torch.nn.Module):
        def __init__(self, in_features: int, out_features: int, bias: bool = True,
                    device=None, dtype=None) -> None:
            factory_kwargs = {'device': device, 'dtype': dtype}
            super().__init__()
            self.in_features = in_features
            self.out_features = out_features
            self.weight = None
            self.up = None
            self.down = None
            self.bias = None

        def forward(self, input):
212
            weight, bias = comfy.ops.cast_bias_weight(self, input)
213
            if self.up is not None:
214
                return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
215
            else:
216
                return torch.nn.functional.linear(input, weight, bias)
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

    class Conv2d(torch.nn.Module):
        def __init__(
            self,
            in_channels,
            out_channels,
            kernel_size,
            stride=1,
            padding=0,
            dilation=1,
            groups=1,
            bias=True,
            padding_mode='zeros',
            device=None,
            dtype=None
        ):
            super().__init__()
            self.in_channels = in_channels
            self.out_channels = out_channels
            self.kernel_size = kernel_size
            self.stride = stride
            self.padding = padding
            self.dilation = dilation
            self.transposed = False
            self.output_padding = 0
            self.groups = groups
            self.padding_mode = padding_mode

            self.weight = None
            self.bias = None
            self.up = None
            self.down = None


        def forward(self, input):
252
            weight, bias = comfy.ops.cast_bias_weight(self, input)
253
            if self.up is not None:
254
                return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
255
            else:
256
                return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
257

258
259
260
261
262
263
264
265
266
267
268
269

class ControlLora(ControlNet):
    def __init__(self, control_weights, global_average_pooling=False, device=None):
        ControlBase.__init__(self, device)
        self.control_weights = control_weights
        self.global_average_pooling = global_average_pooling

    def pre_run(self, model, percent_to_timestep_function):
        super().pre_run(model, percent_to_timestep_function)
        controlnet_config = model.model_config.unet_config.copy()
        controlnet_config.pop("out_channels")
        controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
270
271
272
273
274
275
276
277
278
279
        self.manual_cast_dtype = model.manual_cast_dtype
        dtype = model.get_dtype()
        if self.manual_cast_dtype is None:
            class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
                pass
        else:
            class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
                pass
            dtype = self.manual_cast_dtype

comfyanonymous's avatar
comfyanonymous committed
280
        controlnet_config["operations"] = control_lora_ops
281
        controlnet_config["dtype"] = dtype
282
283
284
285
286
287
288
        self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
        self.control_model.to(comfy.model_management.get_torch_device())
        diffusion_model = model.diffusion_model
        sd = diffusion_model.state_dict()
        cm = self.control_model.state_dict()

        for k in sd:
289
            weight = sd[k]
290
            try:
291
                comfy.utils.set_attr_param(self.control_model, k, weight)
292
293
294
295
296
            except:
                pass

        for k in self.control_weights:
            if k not in {"lora_controlnet"}:
297
                comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    def copy(self):
        c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
        self.copy_to(c)
        return c

    def cleanup(self):
        del self.control_model
        self.control_model = None
        super().cleanup()

    def get_models(self):
        out = ControlBase.get_models(self)
        return out

    def inference_memory_requirements(self, dtype):
        return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)

def load_controlnet(ckpt_path, model=None):
    controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
    if "lora_controlnet" in controlnet_data:
        return ControlLora(controlnet_data)

    controlnet_config = None
comfyanonymous's avatar
comfyanonymous committed
322
323
    supported_inference_dtypes = None

324
    if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
comfyanonymous's avatar
comfyanonymous committed
325
        controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
        diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
        diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                k_in = "controlnet_down_blocks.{}{}".format(count, s)
                k_out = "zero_convs.{}.0{}".format(count, s)
                if k_in not in controlnet_data:
                    loop = False
                    break
                diffusers_keys[k_in] = k_out
            count += 1

        count = 0
        loop = True
        while loop:
            suffix = [".weight", ".bias"]
            for s in suffix:
                if count == 0:
                    k_in = "controlnet_cond_embedding.conv_in{}".format(s)
                else:
                    k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
                k_out = "input_hint_block.{}{}".format(count * 2, s)
                if k_in not in controlnet_data:
                    k_in = "controlnet_cond_embedding.conv_out{}".format(s)
                    loop = False
                diffusers_keys[k_in] = k_out
            count += 1

        new_sd = {}
        for k in diffusers_keys:
            if k in controlnet_data:
                new_sd[diffusers_keys[k]] = controlnet_data.pop(k)

        leftover_keys = controlnet_data.keys()
        if len(leftover_keys) > 0:
            print("leftover keys:", leftover_keys)
        controlnet_data = new_sd

    pth_key = 'control_model.zero_convs.0.0.weight'
    pth = False
    key = 'zero_convs.0.0.weight'
    if pth_key in controlnet_data:
        pth = True
        key = pth_key
        prefix = "control_model."
    elif key in controlnet_data:
        prefix = ""
    else:
        net = load_t2i_adapter(controlnet_data)
        if net is None:
            print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
        return net

    if controlnet_config is None:
comfyanonymous's avatar
comfyanonymous committed
385
386
387
388
        model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
        supported_inference_dtypes = model_config.supported_inference_dtypes
        controlnet_config = model_config.unet_config

389
    load_device = comfy.model_management.get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
390
391
392
393
394
    if supported_inference_dtypes is None:
        unet_dtype = comfy.model_management.unet_dtype()
    else:
        unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)

395
396
397
    manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
    if manual_cast_dtype is not None:
        controlnet_config["operations"] = comfy.ops.manual_cast
comfyanonymous's avatar
comfyanonymous committed
398
    controlnet_config["dtype"] = unet_dtype
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    controlnet_config.pop("out_channels")
    controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
    control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)

    if pth:
        if 'difference' in controlnet_data:
            if model is not None:
                comfy.model_management.load_models_gpu([model])
                model_sd = model.model_state_dict()
                for x in controlnet_data:
                    c_m = "control_model."
                    if x.startswith(c_m):
                        sd_key = "diffusion_model.{}".format(x[len(c_m):])
                        if sd_key in model_sd:
                            cd = controlnet_data[x]
                            cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
            else:
                print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")

        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.control_model = control_model
        missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
    else:
        missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
    print(missing, unexpected)

    global_average_pooling = False
428
429
    filename = os.path.splitext(ckpt_path)[0]
    if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
430
431
        global_average_pooling = True

432
    control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
    return control

class T2IAdapter(ControlBase):
    def __init__(self, t2i_model, channels_in, device=None):
        super().__init__(device)
        self.t2i_model = t2i_model
        self.channels_in = channels_in
        self.control_input = None

    def scale_image_to(self, width, height):
        unshuffle_amount = self.t2i_model.unshuffle_amount
        width = math.ceil(width / unshuffle_amount) * unshuffle_amount
        height = math.ceil(height / unshuffle_amount) * unshuffle_amount
        return width, height

    def get_control(self, x_noisy, t, cond, batched_number):
        control_prev = None
        if self.previous_controlnet is not None:
            control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

        if self.timestep_range is not None:
            if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
                if control_prev is not None:
                    return control_prev
                else:
comfyanonymous's avatar
comfyanonymous committed
458
                    return None
459

460
        if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
461
462
463
464
            if self.cond_hint is not None:
                del self.cond_hint
            self.control_input = None
            self.cond_hint = None
465
            width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
            self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
            if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
                self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
        if x_noisy.shape[0] != self.cond_hint.shape[0]:
            self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
        if self.control_input is None:
            self.t2i_model.to(x_noisy.dtype)
            self.t2i_model.to(self.device)
            self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
            self.t2i_model.cpu()

        control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
        mid = None
        if self.t2i_model.xl == True:
            mid = control_input[-1:]
            control_input = control_input[:-1]
        return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)

    def copy(self):
        c = T2IAdapter(self.t2i_model, self.channels_in)
        self.copy_to(c)
        return c

def load_t2i_adapter(t2i_data):
490
    if 'adapter' in t2i_data:
491
        t2i_data = t2i_data['adapter']
492
493
494
495
496
497
498
499
500
501
    if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
        prefix_replace = {}
        for i in range(4):
            for j in range(2):
                prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
            prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
        prefix_replace["adapter."] = ""
        t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
    keys = t2i_data.keys()

502
503
504
505
506
507
508
509
510
511
512
513
    if "body.0.in_conv.weight" in keys:
        cin = t2i_data['body.0.in_conv.weight'].shape[1]
        model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
    elif 'conv_in.weight' in keys:
        cin = t2i_data['conv_in.weight'].shape[1]
        channel = t2i_data['conv_in.weight'].shape[0]
        ksize = t2i_data['body.0.block2.weight'].shape[2]
        use_conv = False
        down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
        if len(down_opts) > 0:
            use_conv = True
        xl = False
514
        if cin == 256 or cin == 768:
515
516
517
518
519
520
521
522
523
524
525
526
            xl = True
        model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
    else:
        return None
    missing, unexpected = model_ad.load_state_dict(t2i_data)
    if len(missing) > 0:
        print("t2i missing", missing)

    if len(unexpected) > 0:
        print("t2i unexpected", unexpected)

    return T2IAdapter(model_ad, model_ad.input_channels)