model_management.py 6.67 KB
Newer Older
1

2
3
4
5
CPU = 0
NO_VRAM = 1
LOW_VRAM = 2
NORMAL_VRAM = 3
6
HIGH_VRAM = 4
7
8
9
10

accelerate_enabled = False
vram_state = NORMAL_VRAM

11
total_vram = 0
12
13
total_vram_available_mb = -1

14
import sys
15
import psutil
16
17
18

set_vram_to = NORMAL_VRAM

19
20
21
try:
    import torch
    total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
22
23
24
25
26
27
    total_ram = psutil.virtual_memory().total / (1024 * 1024)
    forced_normal_vram = "--normalvram" in sys.argv
    if not forced_normal_vram:
        if total_vram <= 4096:
            print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
            set_vram_to = LOW_VRAM
comfyanonymous's avatar
comfyanonymous committed
28
        elif total_vram > total_ram * 1.1 and total_vram > 14336:
29
30
            print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
            vram_state = HIGH_VRAM
31
32
33
except:
    pass

34
35
if "--cpu" in sys.argv:
    vram_state = CPU
36
37
38
39
if "--lowvram" in sys.argv:
    set_vram_to = LOW_VRAM
if "--novram" in sys.argv:
    set_vram_to = NO_VRAM
40
41
if "--highvram" in sys.argv:
    vram_state = HIGH_VRAM
42
43


44
if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM:
45
46
47
48
49
50
51
52
    try:
        import accelerate
        accelerate_enabled = True
        vram_state = set_vram_to
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
53
54

    total_vram_available_mb = (total_vram - 1024) // 2
55
    total_vram_available_mb = int(max(256, total_vram_available_mb))
56
57


58
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM", "HIGH VRAM"][vram_state])
59

60
61

current_loaded_model = None
comfyanonymous's avatar
comfyanonymous committed
62
current_gpu_controlnets = []
63

64
65
66
model_accelerated = False


67
68
def unload_model():
    global current_loaded_model
69
    global model_accelerated
comfyanonymous's avatar
comfyanonymous committed
70
    global current_gpu_controlnets
71
72
    global vram_state

73
    if current_loaded_model is not None:
74
75
76
77
        if model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
            model_accelerated = False

78
79
80
        #never unload models from GPU on high vram
        if vram_state != HIGH_VRAM:
            current_loaded_model.model.cpu()
81
82
        current_loaded_model.unpatch_model()
        current_loaded_model = None
83
84
85
86
87
88

    if vram_state != HIGH_VRAM:
        if len(current_gpu_controlnets) > 0:
            for n in current_gpu_controlnets:
                n.cpu()
            current_gpu_controlnets = []
89
90
91
92


def load_model_gpu(model):
    global current_loaded_model
93
94
95
    global vram_state
    global model_accelerated

96
97
98
99
100
101
102
103
104
    if model is current_loaded_model:
        return
    unload_model()
    try:
        real_model = model.patch_model()
    except Exception as e:
        model.unpatch_model()
        raise e
    current_loaded_model = model
105
106
    if vram_state == CPU:
        pass
107
    elif vram_state == NORMAL_VRAM or vram_state == HIGH_VRAM:
108
109
110
111
112
113
        model_accelerated = False
        real_model.cuda()
    else:
        if vram_state == NO_VRAM:
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
        elif vram_state == LOW_VRAM:
114
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
comfyanonymous's avatar
comfyanonymous committed
115

116
117
        accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda")
        model_accelerated = True
118
    return current_loaded_model
119

comfyanonymous's avatar
comfyanonymous committed
120
121
def load_controlnet_gpu(models):
    global current_gpu_controlnets
122
    global vram_state
123
124
    if vram_state == CPU:
        return
125
126
127
128
129

    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
        return

comfyanonymous's avatar
comfyanonymous committed
130
131
132
133
134
135
136
137
    for m in current_gpu_controlnets:
        if m not in models:
            m.cpu()

    current_gpu_controlnets = []
    for m in models:
        current_gpu_controlnets.append(m.cuda())

138

139
140
141
142
143
144
145
146
147
148
149
150
def load_if_low_vram(model):
    global vram_state
    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        return model.cuda()
    return model

def unload_if_low_vram(model):
    global vram_state
    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        return model.cpu()
    return model

151
152
153
154
155
156
157
158
159
160
def get_torch_device():
    if vram_state == CPU:
        return torch.device("cpu")
    else:
        return torch.cuda.current_device()

def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
161

162
163
def get_free_memory(dev=None, torch_free_too=False):
    if dev is None:
164
        dev = get_torch_device()
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

    if hasattr(dev, 'type') and dev.type == 'cpu':
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
        stats = torch.cuda.memory_stats(dev)
        mem_active = stats['active_bytes.all.current']
        mem_reserved = stats['reserved_bytes.all.current']
        mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
        mem_free_torch = mem_reserved - mem_active
        mem_free_total = mem_free_cuda + mem_free_torch

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
181
182
183
184
185
186
187
188
189

def maximum_batch_area():
    global vram_state
    if vram_state == NO_VRAM:
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
    area = ((memory_free - 1024) * 0.9) / (0.6)
    return int(max(area, 0))
190
191
192
193
194
195
196
197
198
199
200
201

def cpu_mode():
    global vram_state
    return vram_state == CPU

def should_use_fp16():
    if cpu_mode():
        return False #TODO ?

    if torch.cuda.is_bf16_supported():
        return True

comfyanonymous's avatar
comfyanonymous committed
202
    props = torch.cuda.get_device_properties("cuda")
203
204
205
206
207
208
209
210
211
212
213
    if props.major < 7:
        return False

    #FP32 is faster on those cards?
    nvidia_16_series = ["1660", "1650", "1630"]
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()