Unverified Commit ff9b5618 authored by Faraz's avatar Faraz Committed by GitHub
Browse files

Fix TRTLLM MLA Cuda KV Blocks Causing accuracy drop (#9675)

parent fcd72bd1
......@@ -51,6 +51,7 @@ class TRTLLMMLADecodeMetadata:
workspace: Optional[torch.Tensor] = None
block_kv_indices: Optional[torch.Tensor] = None
max_seq_len: Optional[int] = None
class TRTLLMMLABackend(FlashInferMLAAttnBackend):
......@@ -207,8 +208,9 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend):
)
# Custom fast-path for decode/idle.
max_seqlen_pad = self._calc_padded_blocks(seq_lens.max().item())
block_kv_indices = self.decode_cuda_graph_kv_indices[:bs, :max_seqlen_pad]
# Capture with full width so future longer sequences are safe during replay
max_blocks_per_seq = self._calc_padded_blocks(self.max_context_len)
block_kv_indices = self.decode_cuda_graph_kv_indices[:bs, :max_blocks_per_seq]
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
......@@ -217,13 +219,20 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend):
None,
block_kv_indices,
self.req_to_token.stride(0),
max_seqlen_pad,
max_blocks_per_seq,
NUM_PAGE_PER_BLOCK=TRITON_PAD_NUM_PAGE_PER_BLOCK,
PAGED_SIZE=self.page_size,
)
# Record the true maximum sequence length for this capture batch so that
# the kernel launch path (which requires an int not a tensor) can reuse
# it safely during both capture and replay.
max_seq_len_val = int(seq_lens.max().item())
metadata = TRTLLMMLADecodeMetadata(
self.decode_cuda_graph_workspace, block_kv_indices
self.decode_cuda_graph_workspace,
block_kv_indices,
max_seq_len_val,
)
self.decode_cuda_graph_metadata[bs] = metadata
self.forward_metadata = metadata
......@@ -268,6 +277,13 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend):
PAGED_SIZE=self.page_size,
)
# Update stored max_seq_len so subsequent kernel calls use the correct value
# Prefer CPU tensor to avoid GPU synchronization when available.
if seq_lens_cpu is not None:
metadata.max_seq_len = int(seq_lens_cpu.max().item())
else:
metadata.max_seq_len = int(seq_lens.max().item())
def get_cuda_graph_seq_len_fill_value(self) -> int:
"""Get the fill value for sequence lengths in CUDA graph."""
return 1
......@@ -295,8 +311,9 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend):
forward_batch.seq_lens.device,
)
max_seq_len_val = int(max_seq)
self.forward_metadata = TRTLLMMLADecodeMetadata(
self.workspace_buffer, block_kv_indices
self.workspace_buffer, block_kv_indices, max_seq_len_val
)
forward_batch.decode_trtllm_mla_metadata = self.forward_metadata
......@@ -471,14 +488,12 @@ class TRTLLMMLABackend(FlashInferMLAAttnBackend):
qk_rope_head_dim=self.qk_rope_head_dim,
block_tables=metadata.block_kv_indices,
seq_lens=forward_batch.seq_lens.to(torch.int32),
max_seq_len=int(metadata.block_kv_indices.shape[1] * self.page_size),
max_seq_len=metadata.max_seq_len,
bmm1_scale=bmm1_scale,
)
# Extract value projection part and reshape
raw_out_v = raw_out[..., : layer.v_head_dim].contiguous()
output = raw_out_v.view(-1, layer.tp_q_head_num * layer.v_head_dim)
# Reshape output directly without slicing
output = raw_out.view(-1, layer.tp_q_head_num * layer.v_head_dim)
return output
......
......@@ -208,6 +208,15 @@ class MockModelRunner:
self.kv_cache_dtype = config["kv_cache_dtype"]
self.page_size = config["page_size"]
# Server args stub - needed by attention backends
self.server_args = type(
"ServerArgs",
(),
{
"enable_dp_attention": False, # Default value for testing
},
)
# Model-config stub with MLA attributes
self.model_config = type(
"ModelConfig",
......@@ -833,7 +842,7 @@ class TestTRTLLMMLA(CustomTestCase):
# Test workspace properties
self.assertEqual(metadata.workspace.device.type, "cuda")
self.assertEqual(metadata.workspace.dtype, torch.int8)
self.assertEqual(metadata.workspace.dtype, torch.uint8)
self.assertGreater(
metadata.workspace.numel(), 0, "Workspace should have non-zero size"
)
......@@ -993,8 +1002,8 @@ class TestTRTLLMMLA(CustomTestCase):
)
# Verify CUDA graph buffers are allocated
self.assertIsNotNone(backend.cuda_graph_kv_indices)
self.assertIsNotNone(backend.cuda_graph_workspace)
self.assertIsNotNone(backend.decode_cuda_graph_kv_indices)
self.assertIsNotNone(backend.decode_cuda_graph_workspace)
# Test capture metadata
seq_lens = torch.full(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment