Unverified Commit fd7c4792 authored by shiyi.c_98's avatar shiyi.c_98 Committed by GitHub
Browse files

Gemini Backend (#9)


Co-authored-by: default avatarYing Sheng <sqy1415@gmail.com>
parent c4707f1b
from sglang import function, gen, set_default_backend, Gemini
@function
def few_shot_qa(s, question):
s += (
"""The following are questions with answers.
Q: What is the capital of France?
A: Paris
Q: What is the capital of Germany?
A: Berlin
Q: What is the capital of Italy?
A: Rome
""")
s += "Q: " + question + "\n"
s += "A:" + gen("answer", stop="\n", temperature=0)
set_default_backend(Gemini("gemini-pro"))
state = few_shot_qa.run(question="What is the capital of the United States?")
answer = state["answer"].strip().lower()
assert "washington" in answer, f"answer: {state['answer']}"
print(state.text())
from sglang import function, user, assistant, gen, image, set_default_backend, Gemini
@function
def image_qa(s, image_file1, image_file2, question):
s += user(image(image_file1) + image(image_file2) + question)
s += assistant(gen("answer_1", max_tokens=256))
set_default_backend(Gemini("gemini-pro-vision"))
state = image_qa.run(
image_file1="./images/cat.jpeg",
image_file2="./images/dog.jpeg",
question="Describe difference of the 2 images in one sentence.",
stream=True
)
for out in state.text_iter():
print(out, end="", flush=True)
\ No newline at end of file
from sglang import function, user, assistant, gen, set_default_backend, Gemini
@function
def multi_turn_question(s, question_1, question_2):
s += user(question_1)
s += assistant(gen("answer_1", max_tokens=256))
s += user(question_2)
s += assistant(gen("answer_2", max_tokens=256))
set_default_backend(Gemini("gemini-pro"))
state = multi_turn_question.run(
question_1="What is the capital of the United States?",
question_2="List two local attractions.",
stream=True
)
for out in state.text_iter():
print(out, end="", flush=True)
...@@ -4,6 +4,7 @@ from typing import Callable, List, Optional, Union ...@@ -4,6 +4,7 @@ from typing import Callable, List, Optional, Union
from sglang.backend.anthropic import Anthropic from sglang.backend.anthropic import Anthropic
from sglang.backend.base_backend import BaseBackend from sglang.backend.base_backend import BaseBackend
from sglang.backend.gemini import Gemini
from sglang.backend.openai import OpenAI from sglang.backend.openai import OpenAI
from sglang.backend.runtime_endpoint import RuntimeEndpoint from sglang.backend.runtime_endpoint import RuntimeEndpoint
from sglang.global_config import global_config from sglang.global_config import global_config
......
import os
import warnings
from typing import List, Optional, Union
import numpy as np
from sglang.backend.base_backend import BaseBackend
from sglang.lang.chat_template import get_chat_template
from sglang.lang.interpreter import StreamExecutor
from sglang.lang.ir import SglSamplingParams
try:
import vertexai
from vertexai.preview.generative_models import (
GenerationConfig,
GenerativeModel,
Image,
)
except ImportError as e:
GenerativeModel = e
GEMINI_MODEL_NAMES = [
"gemini-pro",
"gemini-pro-vision",
]
class Gemini(BaseBackend):
def __init__(self, model_name):
super().__init__()
if isinstance(GenerativeModel, Exception):
raise GenerativeModel
project_id = os.environ["GCP_PROJECT_ID"]
location = os.environ["GCP_LOCATION"]
vertexai.init(project=project_id, location=location)
self.model_name = model_name
self.chat_template = get_chat_template("default")
def get_chat_template(self):
return self.chat_template
def generate(
self,
s: StreamExecutor,
sampling_params: SglSamplingParams,
):
if s.messages_:
prompt = self.messages_to_gemini_input(s.messages_)
else:
# single-turn
prompt = (
self.text_to_gemini_input(s.text_, s.cur_images)
if s.cur_images
else s.text_
)
ret = GenerativeModel(self.model_name).generate_content(
prompt,
generation_config=GenerationConfig(**sampling_params.to_gemini_kwargs()),
)
comp = ret.text
return comp, {}
def generate_stream(
self,
s: StreamExecutor,
sampling_params: SglSamplingParams,
):
if s.messages_:
prompt = self.messages_to_gemini_input(s.messages_)
else:
# single-turn
prompt = (
self.text_to_gemini_input(s.text_, s.cur_images)
if s.cur_images
else s.text_
)
generator = GenerativeModel(self.model_name).generate_content(
prompt,
stream=True,
generation_config=GenerationConfig(**sampling_params.to_gemini_kwargs()),
)
for ret in generator:
yield ret.text, {}
def text_to_gemini_input(self, text, images):
input = []
# split with image token
text_segs = text.split(self.chat_template.image_token)
for image_path, image_base64_data in images:
text_seg = text_segs.pop(0)
if text_seg != "":
input.append(text_seg)
input.append(Image.from_bytes(image_base64_data))
text_seg = text_segs.pop(0)
if text_seg != "":
input.append(text_seg)
return input
def messages_to_gemini_input(self, messages):
gemini_message = []
# from openai message format to gemini message format
for msg in messages:
if isinstance(msg["content"], str):
text = msg["content"]
else:
text = msg["content"][0]["text"]
if msg["role"] == "system":
warnings.warn("Warning: system prompt is not supported in Gemini.")
gemini_message.append(
{
"role": "user",
"parts": [{"text": "System prompt: " + text}],
}
)
gemini_message.append(
{
"role": "model",
"parts": [{"text": "Understood."}],
}
)
continue
if msg["role"] == "user":
gemini_msg = {
"role": "user",
"parts": [{"text": text}],
}
elif msg["role"] == "assistant":
gemini_msg = {
"role": "model",
"parts": [{"text": text}],
}
# images
if isinstance(msg["content"], list) and len(msg["content"]) > 1:
for image in msg["content"][1:]:
assert image["type"] == "image_url"
gemini_msg["parts"].append(
{
"inline_data": {
"data": image["image_url"]["url"].split(",")[1],
"mime_type": "image/jpeg",
}
}
)
gemini_message.append(gemini_msg)
return gemini_message
...@@ -428,6 +428,7 @@ class StreamExecutor: ...@@ -428,6 +428,7 @@ class StreamExecutor:
self.messages_.append(last_msg) self.messages_.append(last_msg)
self.cur_images = [] self.cur_images = []
else: else:
# OpenAI chat API format
self.messages_.append({"role": expr.role, "content": new_text}) self.messages_.append({"role": expr.role, "content": new_text})
self.cur_role = None self.cur_role = None
......
...@@ -49,6 +49,16 @@ class SglSamplingParams: ...@@ -49,6 +49,16 @@ class SglSamplingParams:
"presence_penalty": self.presence_penalty, "presence_penalty": self.presence_penalty,
} }
def to_gemini_kwargs(self):
return {
"candidate_count": 1,
"max_output_tokens": self.max_new_tokens,
"stop_sequences": self.stop,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k if self.top_k > 0 else None,
}
def to_anthropic_kwargs(self): def to_anthropic_kwargs(self):
# Anthropic does not support frequency_penalty or presence_penalty, so we drop it here # Anthropic does not support frequency_penalty or presence_penalty, so we drop it here
return { return {
......
...@@ -355,7 +355,7 @@ class MixtralForCausalLM(nn.Module): ...@@ -355,7 +355,7 @@ class MixtralForCausalLM(nn.Module):
): ):
if "rotary_emb.inv_freq" in name: if "rotary_emb.inv_freq" in name:
continue continue
for (param_name, weight_name, shard_id) in stacked_params_mapping: for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name: if weight_name not in name:
continue continue
name = name.replace(weight_name, param_name) name = name.replace(weight_name, param_name)
......
...@@ -304,7 +304,10 @@ def test_image_qa(): ...@@ -304,7 +304,10 @@ def test_image_qa():
temperature=0, temperature=0,
max_new_tokens=64, max_new_tokens=64,
) )
assert "taxi" in state.messages()[-1]["content"] assert (
"taxi" in state.messages()[-1]["content"]
or "car" in state.messages()[-1]["content"]
)
def test_stream(): def test_stream():
......
import unittest
from sglang.test.test_programs import (
test_expert_answer,
test_few_shot_qa,
test_image_qa,
test_mt_bench,
test_parallel_decoding,
test_parallel_encoding,
test_stream,
)
from sglang import Gemini, set_default_backend
class TestGeminiBackend(unittest.TestCase):
backend = None
chat_backend = None
chat_vision_backend = None
def setUp(self):
cls = type(self)
if cls.backend is None:
cls.backend = Gemini("gemini-pro")
cls.chat_backend = Gemini("gemini-pro")
cls.chat_vision_backend = Gemini("gemini-pro-vision")
def test_few_shot_qa(self):
set_default_backend(self.backend)
test_few_shot_qa()
def test_mt_bench(self):
set_default_backend(self.chat_backend)
test_mt_bench()
def test_expert_answer(self):
set_default_backend(self.backend)
test_expert_answer()
def test_parallel_decoding(self):
set_default_backend(self.backend)
test_parallel_decoding()
def test_parallel_encoding(self):
set_default_backend(self.backend)
test_parallel_encoding()
def test_image_qa(self):
set_default_backend(self.chat_vision_backend)
test_image_qa()
def test_stream(self):
set_default_backend(self.backend)
test_stream()
if __name__ == "__main__":
unittest.main(warnings="ignore")
# from sglang.global_config import global_config
# global_config.verbosity = 2
# t = TestGeminiBackend()
# t.setUp()
# t.test_stream()
...@@ -88,4 +88,15 @@ if __name__ == "__main__": ...@@ -88,4 +88,15 @@ if __name__ == "__main__":
# global_config.verbosity = 2 # global_config.verbosity = 2
# t = TestOpenAIBackend() # t = TestOpenAIBackend()
# t.setUp() # t.setUp()
# t.test_few_shot_qa()
# t.test_mt_bench()
# t.test_select()
# t.test_decode_int()
# t.test_decode_json() # t.test_decode_json()
# t.test_expert_answer()
# t.test_tool_use()
# t.test_react()
# t.test_parallel_decoding()
# t.test_parallel_encoding()
# t.test_image_qa()
# t.test_stream()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment