Unverified Commit fbd56002 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Auto balance CI tests (#4238)

parent 730d084f
......@@ -95,7 +95,7 @@ jobs:
strategy:
fail-fast: false
matrix:
range: [0-6, 6-15, 15-22, 22-32, 32-40, 40-48, 48-100]
part: [0, 1, 2, 3, 4, 5, 6]
steps:
- name: Checkout code
uses: actions/checkout@v3
......@@ -109,11 +109,8 @@ jobs:
- name: Run test
timeout-minutes: 30
run: |
RANGE=${{ matrix.range }}
range_begin=${RANGE%-*}
range_end=${RANGE#*-}
cd test/srt
python3 run_suite.py --suite per-commit --range-begin ${range_begin} --range-end ${range_end}
python3 run_suite.py --suite per-commit --auto-partition-id ${{ matrix.part }} --auto-partition-size 7
unit-test-backend-2-gpu:
needs: filter
......@@ -340,7 +337,6 @@ jobs:
python3 test_moe_eval_accuracy_large.py
finish:
if: always()
needs: [
unit-test-frontend, unit-test-backend-1-gpu, unit-test-backend-2-gpu,
performance-test-1-gpu-part-1, performance-test-1-gpu-part-2, performance-test-2-gpu,
......
......@@ -446,22 +446,31 @@ def run_with_timeout(
return ret_value[0]
def run_unittest_files(files: List[str], timeout_per_file: float):
def run_unittest_files(files: List, timeout_per_file: float):
tic = time.time()
success = True
for filename in files:
for file in files:
filename, estimated_time = file.name, file.estimated_time
process = None
def run_one_file(filename):
nonlocal process
filename = os.path.join(os.getcwd(), filename)
print(f"\n\nRun:\npython3 {filename}\n\n", flush=True)
print(f".\n.\nBegin:\npython3 {filename}\n.\n.\n", flush=True)
tic = time.time()
process = subprocess.Popen(
["python3", filename], stdout=None, stderr=None, env=os.environ
)
process.wait()
elapsed = time.time() - tic
print(
f".\n.\nEnd:\n{filename=}, {elapsed=:.0f}, {estimated_time=}\n.\n.\n",
flush=True,
)
return process.returncode
try:
......
import argparse
import glob
from dataclasses import dataclass
from sglang.test.test_utils import run_unittest_files
@dataclass
class TestFile:
name: str
estimated_time: float = 60
suites = {
"per-commit": [
"test_srt_backend.py",
TestFile("test_srt_backend.py"),
# Skip this due to some OPENAI_API_KEY issues
# "test_openai_backend.py",
],
......
import argparse
import glob
from dataclasses import dataclass
from sglang.test.test_utils import run_unittest_files
@dataclass
class TestFile:
name: str
estimated_time: float = 60
suites = {
"per-commit": [
"models/lora/test_lora.py",
"models/lora/test_lora_backend.py",
"models/lora/test_multi_lora_backend.py",
"models/test_embedding_models.py",
"models/test_generation_models.py",
"models/test_qwen_models.py",
"models/test_reward_models.py",
"test_gptqmodel_dynamic.py",
"models/test_gme_qwen_models.py",
"test_abort.py",
"test_chunked_prefill.py",
"test_custom_allreduce.py",
"test_double_sparsity.py",
"test_eagle_infer.py",
"test_embedding_openai_server.py",
"test_eval_accuracy_mini.py",
"test_gguf.py",
"test_input_embeddings.py",
"test_mla.py",
"test_mla_deepseek_v3.py",
"test_mla_flashinfer.py",
"test_mla_fp8.py",
"test_json_constrained.py",
"test_large_max_new_tokens.py",
"test_metrics.py",
"test_no_chunked_prefill.py",
"test_no_overlap_scheduler.py",
"test_openai_server.py",
"test_penalty.py",
"test_pytorch_sampling_backend.py",
"test_radix_attention.py",
"test_regex_constrained.py",
"test_release_memory_occupation.py",
"test_request_length_validation.py",
"test_retract_decode.py",
"test_server_args.py",
# Disabled temporarily
# "test_session_control.py",
"test_skip_tokenizer_init.py",
"test_srt_engine.py",
"test_srt_endpoint.py",
"test_torch_compile.py",
"test_torch_compile_moe.py",
"test_torch_native_attention_backend.py",
"test_torchao.py",
"test_triton_attention_kernels.py",
"test_triton_attention_backend.py",
"test_hidden_states.py",
"test_update_weights_from_disk.py",
"test_update_weights_from_tensor.py",
"test_vertex_endpoint.py",
"test_vision_chunked_prefill.py",
"test_vision_llm.py",
"test_vision_openai_server.py",
"test_w8a8_quantization.py",
"test_fp8_kernel.py",
"test_block_int8.py",
"test_int8_kernel.py",
"test_reasoning_content.py",
TestFile("models/lora/test_lora.py", 76),
TestFile("models/lora/test_lora_backend.py", 420),
TestFile("models/lora/test_multi_lora_backend.py", 1),
TestFile("models/test_embedding_models.py", 119),
TestFile("models/test_generation_models.py", 103),
TestFile("models/test_qwen_models.py", 82),
TestFile("models/test_reward_models.py", 83),
TestFile("test_gptqmodel_dynamic.py", 72),
TestFile("models/test_gme_qwen_models.py", 45),
TestFile("test_abort.py", 51),
TestFile("test_chunked_prefill.py", 336),
TestFile("test_custom_allreduce.py", 1),
TestFile("test_double_sparsity.py", 50),
TestFile("test_eagle_infer.py", 447),
TestFile("test_embedding_openai_server.py", 36),
TestFile("test_eval_accuracy_mini.py", 63),
TestFile("test_gguf.py", 78),
TestFile("test_input_embeddings.py", 38),
TestFile("test_mla.py", 92),
TestFile("test_mla_deepseek_v3.py", 221),
TestFile("test_mla_flashinfer.py", 395),
TestFile("test_mla_fp8.py", 93),
TestFile("test_json_constrained.py", 98),
TestFile("test_large_max_new_tokens.py", 41),
TestFile("test_metrics.py", 32),
TestFile("test_no_chunked_prefill.py", 126),
TestFile("test_no_overlap_scheduler.py", 262),
TestFile("test_openai_server.py", 124),
TestFile("test_penalty.py", 41),
TestFile("test_pytorch_sampling_backend.py", 66),
TestFile("test_radix_attention.py", 167),
TestFile("test_regex_constrained.py", 64),
TestFile("test_release_memory_occupation.py", 44),
TestFile("test_request_length_validation.py", 31),
TestFile("test_retract_decode.py", 54),
TestFile("test_server_args.py", 1),
TestFile("test_skip_tokenizer_init.py", 72),
TestFile("test_srt_engine.py", 237),
TestFile("test_srt_endpoint.py", 94),
TestFile("test_torch_compile.py", 76),
TestFile("test_torch_compile_moe.py", 85),
TestFile("test_torch_native_attention_backend.py", 149),
TestFile("test_torchao.py", 70),
TestFile("test_triton_attention_kernels.py", 4),
TestFile("test_triton_attention_backend.py", 134),
TestFile("test_hidden_states.py", 55),
TestFile("test_update_weights_from_disk.py", 114),
TestFile("test_update_weights_from_tensor.py", 48),
TestFile("test_vertex_endpoint.py", 31),
TestFile("test_vision_chunked_prefill.py", 223),
TestFile("test_vision_llm.py", 18.4),
TestFile("test_vision_openai_server.py", 344),
TestFile("test_w8a8_quantization.py", 46),
TestFile("test_fp8_kernel.py", 2),
TestFile("test_block_int8.py", 22),
TestFile("test_int8_kernel.py", 1),
TestFile("test_reasoning_content.py", 89),
],
"nightly": [
"test_nightly_gsm8k_eval.py",
# Disable temporarily
# "test_nightly_math_eval.py",
TestFile("test_nightly_gsm8k_eval.py"),
],
}
# Expand suite
for target_suite_name, target_tests in suites.items():
for suite_name, tests in suites.items():
if suite_name == target_suite_name:
continue
if target_suite_name in tests:
tests.remove(target_suite_name)
tests.extend(target_tests)
def auto_partition(files, rank, size):
"""
Partition files into size sublists with approximately equal sums of estimated times
using stable sorting, and return the partition for the specified rank.
Args:
files (list): List of file objects with estimated_time attribute
rank (int): Index of the partition to return (0 to size-1)
size (int): Number of partitions
Returns:
list: List of file objects in the specified rank's partition
"""
weights = [f.estimated_time for f in files]
if not weights or size <= 0 or size > len(weights):
return []
# Create list of (weight, original_index) tuples
# Using negative index as secondary key to maintain original order for equal weights
indexed_weights = [(w, -i) for i, w in enumerate(weights)]
# Stable sort in descending order by weight
# If weights are equal, larger (negative) index comes first (i.e., earlier original position)
indexed_weights = sorted(indexed_weights, reverse=True)
# Extract original indices (negate back to positive)
indexed_weights = [(w, -i) for w, i in indexed_weights]
# Initialize partitions and their sums
partitions = [[] for _ in range(size)]
sums = [0.0] * size
# Greedy approach: assign each weight to partition with smallest current sum
for weight, idx in indexed_weights:
# Find partition with minimum sum
min_sum_idx = sums.index(min(sums))
partitions[min_sum_idx].append(idx)
sums[min_sum_idx] += weight
# Return the files corresponding to the indices in the specified rank's partition
indices = partitions[rank]
return [files[i] for i in indices]
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
......@@ -108,17 +148,30 @@ if __name__ == "__main__":
default=None,
help="The end index of the range of the files to run.",
)
arg_parser.add_argument(
"--auto-partition-id",
type=int,
help="Use auto load balancing. The part id.",
)
arg_parser.add_argument(
"--auto-partition-size",
type=int,
help="Use auto load balancing. The number of parts.",
)
args = arg_parser.parse_args()
print(f"{args=}")
if args.suite == "all":
files = glob.glob("**/test_*.py", recursive=True)
else:
files = suites[args.suite]
files = files[args.range_begin : args.range_end]
if args.auto_partition_size:
files = auto_partition(files, args.auto_partition_id, args.auto_partition_size)
else:
files = files[args.range_begin : args.range_end]
print(f"{args=}")
print("The running tests are ", files)
print("The running tests are ", [f.name for f in files])
exit_code = run_unittest_files(files, args.timeout_per_file)
exit(exit_code)
......@@ -42,7 +42,8 @@ def multi_process_parallel(
# as compared to multiprocessing.
# NOTE: We need to set working_dir for distributed tests,
# otherwise we may get import errors on ray workers
ray.init(log_to_driver=False)
ray.init(log_to_driver=True)
distributed_init_port = get_open_port()
refs = []
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment