Unverified Commit f239268f authored by Yineng Zhang's avatar Yineng Zhang Committed by GitHub
Browse files

minor: update gsm8k eval (#2091)

parent 929c7621
import json
import os
import unittest
from datetime import datetime
from types import SimpleNamespace
from sglang.srt.utils import kill_child_process
......@@ -14,6 +17,26 @@ from sglang.test.test_utils import (
popen_launch_server,
)
MODEL_SCORE_THRESHOLDS = {
"meta-llama/Llama-3.1-8B-Instruct": 0.8316,
"mistralai/Mistral-7B-Instruct-v0.3": 0.5861,
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.8672,
"google/gemma-2-27b-it": 0.9227,
"meta-llama/Llama-3.1-70B-Instruct": 0.9623,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 0.6415,
"Qwen/Qwen2-57B-A14B-Instruct": 0.8791,
"neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.8672,
"neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.5544,
"neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8": 0.8356,
"neuralmagic/gemma-2-2b-it-FP8": 0.6059,
"neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8": 0.9504,
"neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8": 0.6138,
"neuralmagic/Qwen2-72B-Instruct-FP8": 0.9504,
"neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.8197,
"hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4": 0.8395,
"hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4": 0.8435,
}
def parse_models(model_string):
return [model.strip() for model in model_string.split(",") if model.strip()]
......@@ -23,10 +46,8 @@ def launch_server(base_url, model, is_fp8, is_tp2):
other_args = ["--log-level-http", "warning", "--trust-remote-code"]
if is_fp8:
if "Llama-3" in model or "gemma-2" in model:
# compressed-tensors
other_args.extend(["--kv-cache-dtype", "fp8_e5m2"])
elif "Qwen2-72B-Instruct-FP8" in model:
# bug
other_args.extend(["--quantization", "fp8"])
else:
other_args.extend(["--quantization", "fp8", "--kv-cache-dtype", "fp8_e5m2"])
......@@ -48,6 +69,49 @@ def launch_server(base_url, model, is_fp8, is_tp2):
return process
def write_results_to_json(model, metrics, mode="a"):
result = {
"timestamp": datetime.now().isoformat(),
"model": model,
"metrics": metrics,
"score": metrics["score"],
}
existing_results = []
if mode == "a" and os.path.exists("results.json"):
try:
with open("results.json", "r") as f:
existing_results = json.load(f)
except json.JSONDecodeError:
existing_results = []
if isinstance(existing_results, list):
existing_results.append(result)
else:
existing_results = [result]
with open("results.json", "w") as f:
json.dump(existing_results, f, indent=2)
def check_model_scores(results):
failed_models = []
for model, score in results:
threshold = MODEL_SCORE_THRESHOLDS.get(model)
if threshold is None:
print(f"Warning: No threshold defined for model {model}")
continue
if score < threshold:
failed_models.append(
f"\nScore Check Failed: {model}\n"
f"Model {model} score ({score:.4f}) is below threshold ({threshold:.4f})"
)
if failed_models:
raise AssertionError("\n".join(failed_models))
class TestEvalAccuracyLarge(unittest.TestCase):
@classmethod
def setUpClass(cls):
......@@ -68,6 +132,9 @@ class TestEvalAccuracyLarge(unittest.TestCase):
kill_child_process(self.process.pid, include_self=True)
def test_mgsm_en_all_models(self):
is_first = True
all_results = []
for model_group, is_fp8, is_tp2 in self.model_groups:
for model in model_group:
with self.subTest(model=model):
......@@ -85,11 +152,24 @@ class TestEvalAccuracyLarge(unittest.TestCase):
print(
f"{'=' * 42}\n{model} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
)
# loosely threshold
assert metrics["score"] > 0.5, f"score={metrics['score']} <= 0.5"
write_results_to_json(model, metrics, "w" if is_first else "a")
is_first = False
all_results.append((model, metrics["score"]))
self.tearDown()
try:
with open("results.json", "r") as f:
print("\nFinal Results from results.json:")
print(json.dumps(json.load(f), indent=2))
except Exception as e:
print(f"Error reading results.json: {e}")
# Check all scores after collecting all results
check_model_scores(all_results)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment