"git@developer.sourcefind.cn:change/sglang.git" did not exist on "67c424cce310d36b7261992ebce00bd218378769"
Unverified Commit f0815419 authored by Sundara Raman Ramachandran's avatar Sundara Raman Ramachandran Committed by GitHub
Browse files

Perform Batch Tokenization. (#5141)

parent 2b3bdc93
import concurrent.futures
import os
import random
import time
from concurrent.futures import ProcessPoolExecutor
from statistics import mean
import requests
from tqdm import tqdm
from transformers import AutoTokenizer
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
###############################################################################
# CONFIG
###############################################################################
ENDPOINT_URL = "http://127.0.0.1:30000"
TOKENIZER_DIR = "/models/meta-llama/Llama-3.2-3B"
# Benchmark configurations
NUM_REQUESTS = 10 # Total number of requests (each with BATCH_SIZE prompts)
NUM_TOKENS = 32000 # Tokens per prompt
BATCH_SIZE = 8 # Number of prompts per request
GEN_TOKENS = 0 # Tokens to generate per prompt
###############################################################################
# REQUEST GENERATION (in parallel)
###############################################################################
def generate_random_prompt(index, tokenizer_dir, num_tokens):
"""Generate a single random prompt with specified token count."""
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir)
vocab_size = tokenizer.vocab_size
def generate_random_text(num_toks):
random_token_ids = [random.randint(0, vocab_size - 1) for _ in range(num_toks)]
return tokenizer.decode(random_token_ids, clean_up_tokenization_spaces=True)
random_text = generate_random_text(num_tokens)
return f"Prompt {index}: {random_text}"
def prepare_all_prompts(num_requests, batch_size, num_tokens, tokenizer_dir):
"""Generate prompts for all requests in parallel."""
total_prompts = num_requests * batch_size
all_prompts = [None] * total_prompts
max_workers = min(os.cpu_count() or 1, total_prompts)
with ProcessPoolExecutor(max_workers=max_workers) as executor:
futures = [
executor.submit(generate_random_prompt, i, tokenizer_dir, num_tokens)
for i in range(total_prompts)
]
for future in tqdm(
concurrent.futures.as_completed(futures),
total=total_prompts,
desc="Generating prompts",
):
index = futures.index(future)
all_prompts[index] = future.result()
batched_prompts = [
all_prompts[i * batch_size : (i + 1) * batch_size] for i in range(num_requests)
]
print(
f"Generated {total_prompts} prompts with {num_tokens} tokens each, grouped into {num_requests} requests of {batch_size} prompts.\n"
)
return batched_prompts
###############################################################################
# HTTP CALLS
###############################################################################
def send_batch_request(endpoint, prompts, gen_tokens, request_id):
"""Send a batch of prompts to the /generate endpoint synchronously."""
sampling_params = {
"max_new_tokens": gen_tokens,
"temperature": 0.7,
"stop": "\n",
}
data = {"text": prompts, "sampling_params": sampling_params}
start_time = time.time()
try:
response = requests.post(
endpoint.base_url + "/generate", json=data, timeout=3600
)
if response.status_code != 200:
error = response.json()
raise RuntimeError(f"Request {request_id} failed: {error}")
result = response.json()
elapsed_time = (time.time() - start_time) * 1000 # Convert to ms
avg_per_prompt = elapsed_time / len(prompts) if prompts else 0
return request_id, elapsed_time, avg_per_prompt, True, len(prompts)
except Exception as e:
print(f"[Request] Error for request {request_id}: {e}")
return request_id, 0, 0, False, len(prompts)
def run_benchmark(endpoint, batched_prompts, batch_size, gen_tokens):
"""Run the benchmark sequentially."""
results = []
num_requests = len(batched_prompts)
# Record start time for total latency
benchmark_start_time = time.time()
for i, batch_prompts in enumerate(batched_prompts):
request_id = i + 1
assert (
len(batch_prompts) == batch_size
), f"Request {request_id} should have {batch_size} prompts, got {len(batch_prompts)}"
print(
f"[Request] Sending request {request_id}/{num_requests} with {len(batch_prompts)} prompts at {int(time.time()*1000)}"
)
result = send_batch_request(endpoint, batch_prompts, gen_tokens, request_id)
results.append(result)
# Calculate total latency
total_latency = (time.time() - benchmark_start_time) * 1000 # Convert to ms
return results, total_latency
###############################################################################
# RESULTS
###############################################################################
def process_results(results, total_latency, num_requests):
"""Process and display benchmark results."""
total_time = 0
successful_requests = 0
failed_requests = 0
request_latencies = []
per_prompt_latencies = []
total_prompts = 0
for request_id, elapsed_time, avg_per_prompt, success, batch_size in results:
if success:
successful_requests += 1
total_prompts += batch_size
request_latencies.append(elapsed_time)
per_prompt_latencies.append(avg_per_prompt)
total_time += elapsed_time / 1000 # Convert to seconds
else:
failed_requests += 1
avg_request_latency = mean(request_latencies) if request_latencies else 0
avg_per_prompt_latency = mean(per_prompt_latencies) if per_prompt_latencies else 0
throughput = total_prompts / total_time if total_time > 0 else 0
print("\nBenchmark Summary:")
print(f" Total requests sent: {len(results)}")
print(f" Total prompts sent: {total_prompts}")
print(f" Successful requests: {successful_requests}")
print(f" Failed requests: {failed_requests}")
print(f" Total latency (all requests): {total_latency:.2f} ms")
print(f" Avg per request latency: {avg_request_latency:.2f} ms")
print(f" Avg per prompt latency: {avg_per_prompt_latency:.2f} ms")
print(f" Throughput: {throughput:.2f} prompts/second\n")
###############################################################################
# MAIN
###############################################################################
def main():
# Initialize endpoint
endpoint = RuntimeEndpoint(ENDPOINT_URL)
# Generate prompts
batched_prompts = prepare_all_prompts(
NUM_REQUESTS, BATCH_SIZE, NUM_TOKENS, TOKENIZER_DIR
)
# Flush cache before benchmark
# endpoint.flush_cache()
# Run benchmark
print(
f"Starting benchmark: NUM_TOKENS={NUM_TOKENS}, BATCH_SIZE={BATCH_SIZE}, NUM_REQUESTS={NUM_REQUESTS}\n"
)
results, total_latency = run_benchmark(
endpoint, batched_prompts, BATCH_SIZE, GEN_TOKENS
)
# Process and display results
process_results(results, total_latency, NUM_REQUESTS)
if __name__ == "__main__":
random.seed(0)
main()
import random
import time
from statistics import mean
from transformers import AutoTokenizer
# CONFIG
TOKENIZER_DIR = (
"/shared/public/sharing/fait360brew/training/models/meta-llama/Llama-3.2-3B"
)
NUM_TOKENS = 20000 # Each prompt should contain this many tokens
BATCH_SIZES = [1, 2, 4, 8] # Test different batch sizes
NUM_RUNS = 5 # Number of runs for each batch size to get reliable measurements
def generate_random_prompts(num_prompts, num_tokens, tokenizer):
"""Generate random prompts with specified token count."""
vocab_size = tokenizer.vocab_size
all_prompts = []
print(f"Generating {num_prompts} random prompts with {num_tokens} tokens each...")
for i in range(num_prompts):
# Generate random token IDs - this directly gives us the exact token count
random_token_ids = [
random.randint(0, vocab_size - 1) for _ in range(num_tokens)
]
random_text = tokenizer.decode(
random_token_ids, clean_up_tokenization_spaces=True
)
prompt = f"Prompt {i}: {random_text}"
tokens = tokenizer.encode(prompt)
print(f" Prompt {i}: {len(tokens)} tokens")
all_prompts.append(prompt)
return all_prompts
def benchmark_sequential_vs_batch(prompts, batch_size, tokenizer):
"""Compare sequential vs batch tokenization for a given batch size."""
# Sequential tokenization using encode()
sequential_times = []
for run in range(NUM_RUNS):
batch_prompts = prompts[:batch_size] # Use same prompts for fair comparison
start_time = time.time()
for prompt in batch_prompts:
tokens = tokenizer.encode(prompt)
sequential_time = (time.time() - start_time) * 1000
sequential_times.append(sequential_time)
# Batch tokenization using tokenizer()
batch_times = []
for run in range(NUM_RUNS):
batch_prompts = prompts[:batch_size] # Use same prompts for fair comparison
start_time = time.time()
tokens = tokenizer(batch_prompts)
batch_time = (time.time() - start_time) * 1000
batch_times.append(batch_time)
return {
"batch_size": batch_size,
"avg_sequential_ms": mean(sequential_times),
"avg_batch_ms": mean(batch_times),
"speedup_factor": (
mean(sequential_times) / mean(batch_times) if mean(batch_times) > 0 else 0
),
"sequential_runs": sequential_times,
"batch_runs": batch_times,
}
def main():
print("Tokenizer Benchmark: Sequential vs Batch Processing")
print("-" * 60)
print(f"Tokenizer: {TOKENIZER_DIR}")
print(f"Tokens per prompt: {NUM_TOKENS}")
print(f"Number of runs per batch size: {NUM_RUNS}")
print("-" * 60)
# Load tokenizer once for all operations
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR)
# The largest batch size determines how many prompts we need
max_batch_size = max(BATCH_SIZES)
all_prompts = generate_random_prompts(max_batch_size, NUM_TOKENS, tokenizer)
results = []
print("\nRunning benchmark...")
for batch_size in BATCH_SIZES:
print(f"\nBenchmarking batch size: {batch_size}")
result = benchmark_sequential_vs_batch(all_prompts, batch_size, tokenizer)
results.append(result)
print(f" Sequential tokenization (encode):")
for i, run_time in enumerate(result["sequential_runs"]):
print(f" Run {i+1}: {run_time:.2f} ms")
print(f" Average: {result['avg_sequential_ms']:.2f} ms")
print(f" Batch tokenization (tokenizer):")
for i, run_time in enumerate(result["batch_runs"]):
print(f" Run {i+1}: {run_time:.2f} ms")
print(f" Average: {result['avg_batch_ms']:.2f} ms")
print(f" Speedup factor: {result['speedup_factor']:.2f}x")
print("\n" + "=" * 60)
print("SUMMARY OF RESULTS")
print("=" * 60)
print(
f"{'Batch Size':<10} {'Sequential (ms)':<18} {'Batch (ms)':<18} {'Speedup':<10}"
)
print("-" * 60)
for result in results:
print(
f"{result['batch_size']:<10} {result['avg_sequential_ms']:.2f} ms{' ' * 8} {result['avg_batch_ms']:.2f} ms{' ' * 8} {result['speedup_factor']:.2f}x"
)
if __name__ == "__main__":
random.seed(0)
main()
...@@ -415,38 +415,60 @@ class TokenizerManager: ...@@ -415,38 +415,60 @@ class TokenizerManager:
) )
if image_inputs and "input_ids" in image_inputs: if image_inputs and "input_ids" in image_inputs:
input_ids = image_inputs["input_ids"] input_ids = image_inputs["input_ids"]
if self.is_generation:
return_logprob = obj.return_logprob self._validate_token_len(obj, input_ids)
logprob_start_len = obj.logprob_start_len return self._create_tokenized_object(
top_logprobs_num = obj.top_logprobs_num obj, input_text, input_ids, input_embeds, image_inputs
token_ids_logprob = obj.token_ids_logprob )
session_params = (
SessionParams(**obj.session_params) if obj.session_params else None def _validate_token_len(
) self, obj: Union[GenerateReqInput, EmbeddingReqInput], input_ids: List[int]
) -> None:
"""Validates that the input token count and the requested token count doesn't exceed the model's context length."""
input_token_num = len(input_ids) if input_ids is not None else 0 input_token_num = len(input_ids) if input_ids is not None else 0
# Check if input alone exceeds context length
if input_token_num >= self.context_len: if input_token_num >= self.context_len:
raise ValueError( raise ValueError(
f"The input ({input_token_num} tokens) is longer than the " f"The input ({input_token_num} tokens) is longer than the "
f"model's context length ({self.context_len} tokens)." f"model's context length ({self.context_len} tokens)."
) )
# Check total tokens (input + max_new_tokens)
max_new_tokens = obj.sampling_params.get("max_new_tokens")
if ( if (
obj.sampling_params.get("max_new_tokens") is not None max_new_tokens is not None
and obj.sampling_params.get("max_new_tokens") + input_token_num and (max_new_tokens + input_token_num) >= self.context_len
>= self.context_len
): ):
raise ValueError( total_tokens = max_new_tokens + input_token_num
error_msg = (
f"Requested token count exceeds the model's maximum context length " f"Requested token count exceeds the model's maximum context length "
f"of {self.context_len} tokens. You requested a total of " f"of {self.context_len} tokens. You requested a total of {total_tokens} "
f"{obj.sampling_params.get('max_new_tokens') + input_token_num} "
f"tokens: {input_token_num} tokens from the input messages and " f"tokens: {input_token_num} tokens from the input messages and "
f"{obj.sampling_params.get('max_new_tokens')} tokens for the " f"{max_new_tokens} tokens for the completion. Please reduce the number "
f"completion. Please reduce the number of tokens in the input " f"of tokens in the input messages or the completion to fit within the limit."
f"messages or the completion to fit within the limit." )
raise ValueError(error_msg)
def _create_tokenized_object(
self,
obj: Union[GenerateReqInput, EmbeddingReqInput],
input_text: str,
input_ids: List[int],
input_embeds: Optional[Union[List[float], None]] = None,
image_inputs: Optional[Dict] = None,
) -> Union[TokenizedGenerateReqInput, TokenizedEmbeddingReqInput]:
"""Create a tokenized request object from common parameters."""
if self.is_generation:
return_logprob = obj.return_logprob
logprob_start_len = obj.logprob_start_len
top_logprobs_num = obj.top_logprobs_num
token_ids_logprob = obj.token_ids_logprob
session_params = (
SessionParams(**obj.session_params) if obj.session_params else None
) )
# Parse sampling parameters
sampling_params = SamplingParams(**obj.sampling_params) sampling_params = SamplingParams(**obj.sampling_params)
sampling_params.normalize(self.tokenizer) sampling_params.normalize(self.tokenizer)
sampling_params.verify() sampling_params.verify()
...@@ -483,6 +505,50 @@ class TokenizerManager: ...@@ -483,6 +505,50 @@ class TokenizerManager:
return tokenized_obj return tokenized_obj
async def _batch_tokenize_and_process(
self, batch_size: int, obj: Union[GenerateReqInput, EmbeddingReqInput]
) -> List[Union[TokenizedGenerateReqInput, TokenizedEmbeddingReqInput]]:
"""Handle batch tokenization for text inputs only."""
logger.debug(f"Starting batch tokenization for {batch_size} text requests")
# Collect requests and texts
requests = [obj[i] for i in range(batch_size)]
texts = [req.text for req in requests]
# Batch tokenize all texts
encoded = self.tokenizer(texts)
input_ids_list = encoded["input_ids"]
# Process all requests
tokenized_objs = []
for i, req in enumerate(requests):
self._validate_token_len(obj[i], input_ids_list[i])
tokenized_objs.append(
self._create_tokenized_object(
req, req.text, input_ids_list[i], None, None
)
)
logger.debug(f"Completed batch processing for {batch_size} requests")
return tokenized_objs
def _validate_batch_tokenization_constraints(
self, batch_size: int, obj: Union[GenerateReqInput, EmbeddingReqInput]
) -> None:
"""Validate constraints for batch tokenization processing."""
for i in range(batch_size):
if self.is_generation and obj[i].image_data:
raise ValueError(
"For image input processing do not set `enable_tokenizer_batch_encode`."
)
if obj[i].input_ids is not None:
raise ValueError(
"Batch tokenization is not needed for pre-tokenized input_ids. Do not set `enable_tokenizer_batch_encode`."
)
if obj[i].input_embeds is not None:
raise ValueError(
"Batch tokenization is not needed for input_embeds. Do not set `enable_tokenizer_batch_encode`."
)
def _send_one_request( def _send_one_request(
self, self,
obj: Union[GenerateReqInput, EmbeddingReqInput], obj: Union[GenerateReqInput, EmbeddingReqInput],
...@@ -560,14 +626,27 @@ class TokenizerManager: ...@@ -560,14 +626,27 @@ class TokenizerManager:
generators = [] generators = []
rids = [] rids = []
if getattr(obj, "parallel_sample_num", 1) == 1: if getattr(obj, "parallel_sample_num", 1) == 1:
# Send all requests if self.server_args.enable_tokenizer_batch_encode:
for i in range(batch_size): # Validate batch tokenization constraints
tmp_obj = obj[i] self._validate_batch_tokenization_constraints(batch_size, obj)
tokenized_obj = await self._tokenize_one_request(tmp_obj)
self._send_one_request(tmp_obj, tokenized_obj, created_time) tokenized_objs = await self._batch_tokenize_and_process(batch_size, obj)
generators.append(self._wait_one_response(tmp_obj, request))
rids.append(tmp_obj.rid) for i, tokenized_obj in enumerate(tokenized_objs):
tmp_obj = obj[i]
self._send_one_request(tmp_obj, tokenized_obj, created_time)
generators.append(self._wait_one_response(tmp_obj, request))
rids.append(tmp_obj.rid)
else:
# Sequential tokenization and processing
for i in range(batch_size):
tmp_obj = obj[i]
tokenized_obj = await self._tokenize_one_request(tmp_obj)
self._send_one_request(tmp_obj, tokenized_obj, created_time)
generators.append(self._wait_one_response(tmp_obj, request))
rids.append(tmp_obj.rid)
else: else:
# FIXME: When using batch and parallel_sample_num together, the perf is not optimal. # FIXME: When using batch and parallel_sample_num together, the perf is not optimal.
if batch_size > 128: if batch_size > 128:
......
...@@ -49,6 +49,7 @@ class ServerArgs: ...@@ -49,6 +49,7 @@ class ServerArgs:
tokenizer_path: Optional[str] = None tokenizer_path: Optional[str] = None
tokenizer_mode: str = "auto" tokenizer_mode: str = "auto"
skip_tokenizer_init: bool = False skip_tokenizer_init: bool = False
enable_tokenizer_batch_encode: bool = False
load_format: str = "auto" load_format: str = "auto"
trust_remote_code: bool = False trust_remote_code: bool = False
dtype: str = "auto" dtype: str = "auto"
...@@ -432,6 +433,11 @@ class ServerArgs: ...@@ -432,6 +433,11 @@ class ServerArgs:
action="store_true", action="store_true",
help="If set, skip init tokenizer and pass input_ids in generate request", help="If set, skip init tokenizer and pass input_ids in generate request",
) )
parser.add_argument(
"--enable-tokenizer-batch-encode",
action="store_true",
help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
)
parser.add_argument( parser.add_argument(
"--load-format", "--load-format",
type=str, type=str,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment