"tests/vscode:/vscode.git/clone" did not exist on "bc8f8b0b7a90d565ff20d08088e1830a61c19639"
Unverified Commit ed0fdbf3 authored by fzyzcjy's avatar fzyzcjy Committed by GitHub
Browse files

Tool to dump and compare internal activation tensors (#7976)

parent b602f423
import argparse
import functools
import re
from pathlib import Path
import polars as pl
import torch
from sglang.srt.debug_utils.dumper import get_truncated_value
def main(args):
df_target = read_meta(args.target_path)
df_target = df_target.sort("rank", "dump_index")
df_target = df_target.filter(
(pl.col("forward_pass_id") >= args.start_id)
& (pl.col("forward_pass_id") <= args.end_id)
)
assert all(
c in df_target.columns
for c in ["rank", "forward_pass_id", "dump_index", "name"]
)
df_baseline = read_meta(args.baseline_path)
print("df_target", df_target)
print("df_baseline", df_baseline)
for row in df_target.iter_rows(named=True):
rows_baseline = df_baseline.filter(
(
pl.col("forward_pass_id")
== row["forward_pass_id"] - args.start_id + args.baseline_start_id
)
& functools.reduce(
lambda a, b: a & b,
[
pl.col(col) == row[col]
for col in row.keys()
if col not in ["forward_pass_id", "dump_index", "filename"]
],
)
)
assert len(rows_baseline) == 1, f"{rows_baseline=}"
row_baseline = rows_baseline.to_dicts()[0]
path_baseline = Path(args.baseline_path) / row_baseline["filename"]
path_target = Path(args.target_path) / row["filename"]
print(f"Check: target={str(path_target)} baseline={str(path_baseline)}")
check_tensor_pair(path_baseline=path_baseline, path_target=path_target)
print()
def read_meta(directory):
directory = Path(directory)
assert directory.is_dir(), f"{directory=} should be a directory"
rows = []
for p in directory.glob("*.pt"):
full_kwargs = {}
for kv in p.stem.split("___"):
k, v = kv.split("=")
full_kwargs[k] = v
rows.append(
{
"filename": str(p.name),
**full_kwargs,
}
)
df = pl.DataFrame(rows)
df = df.with_columns(
pl.col("forward_pass_id").cast(int),
pl.col("rank").cast(int),
)
return df
def check_tensor_pair(path_baseline, path_target):
x_baseline = torch.load(path_baseline, weights_only=True)
x_target = torch.load(path_target, weights_only=True)
print(
f"[shape] {x_baseline.shape} vs {x_target.shape}\t"
f"[dtype] {x_baseline.dtype} vs {x_target.dtype}"
)
if x_baseline.shape != x_target.shape:
print(f"❌ Shape mismatch")
return
raw_abs_diff = (x_target - x_baseline).abs()
max_abs_diff = raw_abs_diff.max().item()
mean_abs_diff = raw_abs_diff.mean().item()
rel_diff = _calc_rel_diff(x_target, x_baseline)
needs_print = max_abs_diff > 1e-3
print(
"\t".join(
f"{'❌' if value > 1e-3 else '✅'} {name}={value}"
for name, value in [
("rel_diff", rel_diff),
("max_abs_diff", max_abs_diff),
("mean_abs_diff", mean_abs_diff),
]
)
)
if needs_print:
print(f"x_baseline(sample)={get_truncated_value(x_baseline)}")
print(f"x_target(sample)={get_truncated_value(x_target)}")
# Copied from DeepGEMM
def _calc_rel_diff(x: torch.Tensor, y: torch.Tensor):
x, y = x.double(), y.double()
denominator = (x * x + y * y).sum()
sim = 2 * (x * y).sum() / denominator
return 1 - sim
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--baseline-path", type=str)
parser.add_argument("--target-path", type=str)
parser.add_argument("--start-id", type=int, default=0)
parser.add_argument("--end-id", type=int, default=1000000)
parser.add_argument("--baseline-start-id", type=int, default=0)
args = parser.parse_args()
main(args)
import os
import time
from pathlib import Path
from typing import Optional
import torch
from sglang.srt.utils import get_bool_env_var
import torch.distributed as dist
class _Dumper:
"""Utility to dump tensors, which can be useful when comparison checking models.
Example usage:
debug_utils.dumper.dump("layer_start_hidden_states", hidden_states, layer_id=self.layer_id)
dumper.on_forward_pass_start()
dumper.dump("layer_start__hidden_states", hidden_states, layer_id=self.layer_id)
Import from non-SGLang system:
```
import sys
sys.path.append("/YOUR_PATH/sglang/python/sglang/srt/debug_utils")
from dumper import dumper
```
Related: `sglang.srt.debug_utils.dump_comparator` for dump comparison
"""
def __init__(self):
self._enable = get_bool_env_var("SGLANG_DUMPER_ENABLE", "true")
# Do not import `sglang` to make this file standalone
self._enable = bool(int(os.environ.get("SGLANG_DUMPER_ENABLE", "1")))
self._base_dir = Path(os.environ.get("SGLANG_DUMPER_DIR", "/tmp"))
self._enable_write_file = get_bool_env_var("SGLANG_DUMPER_WRITE_FILE", "1")
self._partial_name = str(time.time())
self.forward_pass_id = None
self._enable_write_file = bool(
int(os.environ.get("SGLANG_DUMPER_WRITE_FILE", "1"))
)
self._partial_name: Optional[str] = None
self._dump_index = 0
self._forward_pass_id = 0
def on_forward_pass_start(self):
self._forward_pass_id += 1
print(
f"[Dumper] [{time.time()}] on_forward_pass_start id={self._forward_pass_id}"
)
def dump(self, name, value, **kwargs):
if not self._enable:
return
from sglang.srt.distributed import get_tensor_model_parallel_rank
assert (
self._forward_pass_id >= 1
), "Do you forget to call `dumper.on_forward_pass_start()`?"
self._dump_index += 1
if self._partial_name is None:
self._partial_name = _get_partial_name()
rank = get_tensor_model_parallel_rank()
rank = dist.get_rank()
full_kwargs = dict(
forward_pass_id=self.forward_pass_id,
forward_pass_id=self._forward_pass_id,
rank=rank,
name=name,
dump_index=self._dump_index,
**kwargs,
)
full_filename = "___".join(f"{k}={v}" for k, v in full_kwargs.items()) + ".pt"
path = (
self._base_dir / f"sglang_dump_{self._partial_name}_{rank}" / full_filename
)
path = self._base_dir / f"sglang_dump_{self._partial_name}" / full_filename
sample_value = self._get_sample_value(name, value)
sample_value = get_truncated_value(value)
print(
f"[{rank}, {time.time()}] {path} "
f"[Dumper] [{rank}, {time.time()}] {path} "
f"type={type(value)} "
f"shape={value.shape if isinstance(value, torch.Tensor) else None} "
f"dtype={value.dtype if isinstance(value, torch.Tensor) else None} "
......@@ -52,23 +78,31 @@ class _Dumper:
path.parent.mkdir(parents=True, exist_ok=True)
torch.save(value, str(path))
def _get_sample_value(self, name, value):
if value is None:
return None
if isinstance(value, tuple):
return [self._get_sample_value(name, x) for x in value]
def _get_partial_name():
rank = dist.get_rank()
object_list = [str(time.time()) if rank == 0 else None]
dist.broadcast_object_list(object_list, device="cuda")
return object_list[0]
def get_truncated_value(value):
if value is None:
return None
if isinstance(value, tuple):
return [get_truncated_value(x) for x in value]
if not isinstance(value, torch.Tensor):
return None
if not isinstance(value, torch.Tensor):
return None
if value.numel() < 200:
return value
if value.numel() < 200:
return value
slices = [
slice(0, 5) if dim_size > 200 else slice(None) for dim_size in value.shape
]
return value[tuple(slices)]
slices = [
slice(0, 5) if dim_size > 200 else slice(None) for dim_size in value.shape
]
return value[tuple(slices)]
dumper = _Dumper()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment