Unverified Commit ec5f9442 authored by Adarsh Shirawalmath's avatar Adarsh Shirawalmath Committed by GitHub
Browse files

[Model] Add support for Arcee Foundational Model (#8154)

parent 3bdcdd13
...@@ -45,6 +45,7 @@ in the GitHub search bar. ...@@ -45,6 +45,7 @@ in the GitHub search bar.
| **SmolLM** (135M–1.7B) | `HuggingFaceTB/SmolLM-1.7B` | Hugging Face’s ultra-small LLM series (135M–1.7B params) offering surprisingly strong results, enabling advanced AI on mobile/edge devices. | | **SmolLM** (135M–1.7B) | `HuggingFaceTB/SmolLM-1.7B` | Hugging Face’s ultra-small LLM series (135M–1.7B params) offering surprisingly strong results, enabling advanced AI on mobile/edge devices. |
| **GLM-4** (Multilingual 9B) | `ZhipuAI/glm-4-9b-chat` | Zhipu’s GLM-4 series (up to 9B parameters) – open multilingual models with support for 1M-token context and even a 5.6B multimodal variant (Phi-4V). | | **GLM-4** (Multilingual 9B) | `ZhipuAI/glm-4-9b-chat` | Zhipu’s GLM-4 series (up to 9B parameters) – open multilingual models with support for 1M-token context and even a 5.6B multimodal variant (Phi-4V). |
| **MiMo** (7B series) | `XiaomiMiMo/MiMo-7B-RL` | Xiaomi's reasoning-optimized model series, leverages Multiple-Token Prediction for faster inference. | | **MiMo** (7B series) | `XiaomiMiMo/MiMo-7B-RL` | Xiaomi's reasoning-optimized model series, leverages Multiple-Token Prediction for faster inference. |
| **Arcee AFM-4.5B** | `arcee-ai/AFM-4.5B-Base` | Arcee's foundational model series for real world reliability and edge deployments. |
| **Persimmon** (8B) | `adept/persimmon-8b-chat` | Adept’s open 8B model with a 16K context window and fast inference; trained for broad usability and licensed under Apache 2.0. | | **Persimmon** (8B) | `adept/persimmon-8b-chat` | Adept’s open 8B model with a 16K context window and fast inference; trained for broad usability and licensed under Apache 2.0. |
| **Granite 3.0, 3.1** (IBM) | `ibm-granite/granite-3.1-8b-instruct` | IBM's open dense foundation models optimized for reasoning, code, and business AI use cases. Integrated with Red Hat and watsonx systems. | | **Granite 3.0, 3.1** (IBM) | `ibm-granite/granite-3.1-8b-instruct` | IBM's open dense foundation models optimized for reasoning, code, and business AI use cases. Integrated with Red Hat and watsonx systems. |
| **Granite 3.0 MoE** (IBM) | `ibm-granite/granite-3.0-3b-a800m-instruct` | IBM’s Mixture-of-Experts models offering strong performance with cost-efficiency. MoE expert routing designed for enterprise deployment at scale. | | **Granite 3.0 MoE** (IBM) | `ibm-granite/granite-3.0-3b-a800m-instruct` | IBM’s Mixture-of-Experts models offering strong performance with cost-efficiency. MoE expert routing designed for enterprise deployment at scale. |
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inference-only Arcee Foundational Model (AFM) compatible with HuggingFace weights."""
import logging
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import torch
from torch import nn
from transformers import LlamaConfig
from sglang.srt.distributed import (
get_pp_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from sglang.srt.layers.activation import get_act_fn
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.utils import PPMissingLayer, get_layer_id
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
from sglang.srt.model_loader.weight_utils import (
default_weight_loader,
kv_cache_scales_loader,
maybe_remap_kv_scale_name,
)
from sglang.srt.utils import add_prefix, make_layers
logger = logging.getLogger(__name__)
class ArceeMLP(nn.Module):
"""
MLP block for the Arcee model, using a ReLU-squared activation function.
This differs from the Llama SwiGLU activation.
"""
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
reduce_results: bool = True,
) -> None:
super().__init__()
# Arcee uses a single up-projection, not a merged gate/up projection.
self.up_proj = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=False,
quant_config=quant_config,
prefix=add_prefix("up_proj", prefix),
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
reduce_results=reduce_results,
)
if hidden_act != "relu2":
raise ValueError(
f"Unsupported activation: {hidden_act}. "
"Arcee model in SGLang only supports 'relu2'."
)
# The activation function is relu(x)^2
self.act_fn = get_act_fn("relu2")
def forward(self, x, forward_batch=None):
x, _ = self.up_proj(x)
x = self.act_fn(x)
x, _ = self.down_proj(x)
return x
class ArceeAttention(nn.Module):
def __init__(
self,
config: LlamaConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
layer_id: int = 0,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
rope_is_neox_style: bool = True,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
bias: bool = False,
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
assert self.total_num_kv_heads % tp_size == 0
else:
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = getattr(config, "head_dim", None)
if self.head_dim is None:
self.head_dim = self.hidden_size // self.total_num_heads
self.partial_rotary_factor = getattr(config, "partial_rotary_factor", 1)
self.rotary_dim = int(self.partial_rotary_factor * self.head_dim)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=bias,
quant_config=quant_config,
prefix=add_prefix("o_proj", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=rope_is_neox_style,
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch)
output, _ = self.o_proj(attn_output)
return output
class ArceeDecoderLayer(nn.Module):
def __init__(
self,
config: LlamaConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None
):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings
)
rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
attention_bias = getattr(config, "attention_bias", False) or getattr(
config, "bias", False
)
self.self_attn = ArceeAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
layer_id=layer_id,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
rope_is_neox_style=rope_is_neox_style,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
bias=attention_bias,
)
self.mlp = ArceeMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class ArceeModel(nn.Module):
def __init__(
self,
config: LlamaConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.pp_group = get_pp_group()
if self.pp_group.is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("embed_tokens", prefix),
)
else:
self.embed_tokens = PPMissingLayer()
self.layers, self.start_layer, self.end_layer = make_layers(
config.num_hidden_layers,
lambda idx, prefix: ArceeDecoderLayer(
config=config, quant_config=quant_config, layer_id=idx, prefix=prefix
),
pp_rank=self.pp_group.rank_in_group,
pp_size=self.pp_group.world_size,
prefix="model.layers",
)
if self.pp_group.is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer(return_tuple=True)
self.layers_to_capture = []
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]], PPProxyTensors]:
if self.pp_group.is_first_rank:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds
residual = None
else:
assert pp_proxy_tensors is not None
hidden_states = pp_proxy_tensors["hidden_states"]
residual = pp_proxy_tensors["residual"]
aux_hidden_states = []
for i in range(self.start_layer, self.end_layer):
if i in self.layers_to_capture:
aux_hidden_states.append(hidden_states + residual)
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
forward_batch,
residual,
)
if not self.pp_group.is_last_rank:
return PPProxyTensors(
{
"hidden_states": hidden_states,
"residual": residual,
}
)
else:
hidden_states, _ = self.norm(hidden_states, residual)
if len(aux_hidden_states) == 0:
return hidden_states
return hidden_states, aux_hidden_states
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
tp_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
for layer_idx, scaling_factor in kv_cache_scales_loader(
quantization_param_path,
tp_rank,
tp_size,
self.config.num_hidden_layers,
self.config.__class__.model_type,
):
if not isinstance(self.layers[layer_idx], nn.Identity):
layer_self_attn = self.layers[layer_idx].self_attn
if hasattr(layer_self_attn.attn, "k_scale"):
layer_self_attn.attn.k_scale = scaling_factor
layer_self_attn.attn.v_scale = scaling_factor
else:
raise RuntimeError(
"Self attention has no KV cache scaling factor attribute!"
)
class ArceeForCausalLM(nn.Module):
# BitandBytes specific attributes
default_bitsandbytes_target_modules = [
# Note: gate_proj is removed compared to Llama
".down_proj.",
".up_proj.",
".q_proj.",
".k_proj.",
".v_proj.",
".o_proj.",
]
# in TP, these weights are partitioned along the column dimension (dim=-1)
column_parallel_weights_modules = [".down_proj.", ".o_proj."]
bitsandbytes_stacked_params_mapping = {
# shard_name, weight_name, index
# Note: gate_proj and up_proj are removed as they are not stacked in ArceeMLP
".q_proj": (".qkv_proj", 0),
".k_proj": (".qkv_proj", 1),
".v_proj": (".qkv_proj", 2),
}
def __init__(
self,
config: LlamaConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.pp_group = get_pp_group()
self.config = config
self.quant_config = quant_config
self.model = self._init_model(config, quant_config, add_prefix("model", prefix))
# Arcee does not tie word embeddings
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
)
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
# Parameters that are stacked in a single tensor in this model
self.stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
]
self.capture_aux_hidden_states = False
def _init_model(
self,
config: LlamaConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
return ArceeModel(config, quant_config=quant_config, prefix=prefix)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
get_embedding: bool = False,
pp_proxy_tensors: Optional[PPProxyTensors] = None,
) -> LogitsProcessorOutput:
hidden_states = self.model(
input_ids,
positions,
forward_batch,
input_embeds,
pp_proxy_tensors=pp_proxy_tensors,
)
aux_hidden_states = None
if self.capture_aux_hidden_states:
hidden_states, aux_hidden_states = hidden_states
if self.pp_group.is_last_rank:
if not get_embedding:
return self.logits_processor(
input_ids,
hidden_states,
self.lm_head,
forward_batch,
aux_hidden_states,
)
else:
return self.pooler(hidden_states, forward_batch)
else:
return hidden_states
@property
def start_layer(self):
return self.model.start_layer
@property
def end_layer(self):
return self.model.end_layer
def get_input_embeddings(self) -> nn.Embedding:
return self.model.embed_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
layer_id = get_layer_id(name)
if (
layer_id is not None
and hasattr(self.model, "start_layer")
and (
layer_id < self.model.start_layer
or layer_id >= self.model.end_layer
)
):
continue
if "rotary_emb.inv_freq" in name or "projector" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
continue
# Handle FP8 kv-scale remapping
if "scale" in name:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
is_stacked = False
for param_name, weight_name, shard_id in self.stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
is_stacked = True
break
if not is_stacked:
if name in params_dict:
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
else:
logger.warning(f"Parameter {name} not found in model.")
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
self.model.load_kv_cache_scales(quantization_param_path)
EntryClass = [ArceeForCausalLM]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment