@@ -153,12 +153,10 @@ The precompilation process typically takes around 10 minutes to complete.
**Description**: SGLang implements DeepSeek V3 Multi-Token Prediction (MTP) based on [EAGLE speculative decoding](https://docs.sglang.ai/backend/speculative_decoding.html#EAGLE-Decoding). With this optimization, the decoding speed can be improved by **1.8x** for batch size 1 and **1.5x** for batch size 32 respectively on H200 TP8 setting.
`--speculative-num-steps`, `--speculative-eagle-topk` and `--speculative-num-draft-tokens` to enable this feature. For example:
Add arguments `--speculative-algorithm`, `--speculative-num-steps`, `--speculative-eagle-topk` and `--speculative-num-draft-tokens` to enable this feature. For example:
- The draft model are available at huggingface: [lmsys/DeepSeek-V3-0324-NextN](https://huggingface.co/lmsys/DeepSeek-V3-0324-NextN), [lmsys/DeepSeek-R1-NextN](https://huggingface.co/lmsys/DeepSeek-R1-NextN). It can also be exported from original DeepSeek-V3/R1 model with [export_deepseek_nextn.py](https://github.com/sgl-project/sglang/blob/main/scripts/export_deepseek_nextn.py) script.
- The best configuration for `--speculative-num-steps`, `--speculative-eagle-topk` and `--speculative-num-draft-tokens` can be searched with [bench_speculative.py](https://github.com/sgl-project/sglang/blob/main/scripts/playground/bench_speculative.py) script for given batch size. The minimum configuration is `--speculative-num-steps 1 --speculative-eagle-topk 1 --speculative-num-draft-tokens 2`, which can achieve speedup for larger batch sizes.
When using FlashInfer MLA wrapper (`--attention-backend flashinfer`) with speculative decoding, set the `--speculative-eagle-topk` parameter to `1`. The FlashAttention 3 backend also only supports `--speculative-eagle-topk 1`.
- To enable DeepSeek MTP for large batch sizes (>32), there are some parameters should be changed (Reference [this discussion](https://github.com/sgl-project/sglang/issues/4543#issuecomment-2737413756)):