"vscode:/vscode.git/clone" did not exist on "dde5cf5d02188c7f493caef32d4ed59fc1805a2c"
Unverified Commit e9c6ce46 authored by Xiaoyu Zhang's avatar Xiaoyu Zhang Committed by GitHub
Browse files

sgl scaled_fp8_quant support output padding (#4861)

parent 3fadc647
...@@ -50,6 +50,7 @@ if _is_cuda: ...@@ -50,6 +50,7 @@ if _is_cuda:
def scaled_fp8_quant( def scaled_fp8_quant(
input: torch.Tensor, input: torch.Tensor,
scale: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None,
num_token_padding: Optional[int] = None,
use_per_token_if_dynamic: bool = False, use_per_token_if_dynamic: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]: ) -> tuple[torch.Tensor, torch.Tensor]:
""" """
...@@ -59,6 +60,8 @@ if _is_cuda: ...@@ -59,6 +60,8 @@ if _is_cuda:
input (torch.Tensor): Input tensor to be quantized input (torch.Tensor): Input tensor to be quantized
scale (Optional[torch.Tensor]): Pre-computed scaling factor for static quantization. scale (Optional[torch.Tensor]): Pre-computed scaling factor for static quantization.
If None, scales will be computed dynamically. If None, scales will be computed dynamically.
num_token_padding (Optional[int]): If specified, pad the first dimension
of the output to at least this value.
use_per_token_if_dynamic (bool): When using dynamic scaling (scale=None), use_per_token_if_dynamic (bool): When using dynamic scaling (scale=None),
determines the quantization granularity: determines the quantization granularity:
- True: compute scale per token - True: compute scale per token
...@@ -75,6 +78,8 @@ if _is_cuda: ...@@ -75,6 +78,8 @@ if _is_cuda:
assert input.ndim == 2, f"Expected 2D input tensor, got {input.ndim}D" assert input.ndim == 2, f"Expected 2D input tensor, got {input.ndim}D"
shape = input.shape shape = input.shape
out_dtype = torch.float8_e4m3fnuz if _is_hip else torch.float8_e4m3fn out_dtype = torch.float8_e4m3fnuz if _is_hip else torch.float8_e4m3fn
if num_token_padding:
shape = (max(num_token_padding, input.shape[0]), shape[1])
output = torch.empty(shape, device=input.device, dtype=out_dtype) output = torch.empty(shape, device=input.device, dtype=out_dtype)
if scale is None: if scale is None:
......
...@@ -457,12 +457,9 @@ class Fp8LinearOp: ...@@ -457,12 +457,9 @@ class Fp8LinearOp:
qinput, x_scale = sgl_scaled_fp8_quant( qinput, x_scale = sgl_scaled_fp8_quant(
input_2d, input_2d,
input_scale, input_scale,
num_token_padding=self.output_padding,
use_per_token_if_dynamic=use_per_token_if_dynamic, use_per_token_if_dynamic=use_per_token_if_dynamic,
) )
if self.output_padding:
pad_size = max(self.output_padding - qinput.shape[0], 0)
if pad_size > 0:
qinput = torch.nn.functional.pad(qinput, (0, 0, 0, pad_size))
else: else:
qinput, x_scale = ops.scaled_fp8_quant( qinput, x_scale = ops.scaled_fp8_quant(
input_2d, input_2d,
......
...@@ -82,6 +82,61 @@ if is_cuda: ...@@ -82,6 +82,61 @@ if is_cuda:
dequantize_per_token(ref_y, scale, dtype), dequantize_per_token(ref_y, scale, dtype),
) )
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
def test_scaled_fp8_quant_with_padding(dtype) -> None:
original_rows = 5
x = (torch.randn(size=(original_rows, 16), device="cuda") * 13).to(dtype)
padding_size = 10
# Test with dynamic quantization
y_dynamic, scale_dynamic = scaled_fp8_quant(
x, None, num_token_padding=padding_size
)
# Verify output shape has the padded size
assert y_dynamic.shape[0] == padding_size
assert y_dynamic.shape[1] == x.shape[1]
# Verify that the actual data in the non-padded region is correctly quantized
y_without_padding, scale_without_padding = scaled_fp8_quant(x, None)
torch.testing.assert_close(y_dynamic[:original_rows], y_without_padding)
# Test with static quantization
# First get a scale
_, scale = scaled_fp8_quant(x, None)
# Then use it for static quantization with padding
y_static, _ = scaled_fp8_quant(x, scale, num_token_padding=padding_size)
# Verify output shape has the padded size
assert y_static.shape[0] == padding_size
assert y_static.shape[1] == x.shape[1]
# Verify that the actual data in the non-padded region is correctly quantized
y_static_without_padding, _ = scaled_fp8_quant(x, scale)
torch.testing.assert_close(y_static[:original_rows], y_static_without_padding)
# Test with per-token dynamic quantization
y_per_token, scale_per_token = scaled_fp8_quant(
x, None, num_token_padding=padding_size, use_per_token_if_dynamic=True
)
# Verify output shape has the padded size
assert y_per_token.shape[0] == padding_size
assert y_per_token.shape[1] == x.shape[1]
# Verify that the actual data in the non-padded region is correctly quantized
y_per_token_without_padding, scale_per_token_without_padding = scaled_fp8_quant(
x, None, use_per_token_if_dynamic=True
)
torch.testing.assert_close(
y_per_token[:original_rows], y_per_token_without_padding
)
torch.testing.assert_close(
scale_per_token[:original_rows], scale_per_token_without_padding
)
if __name__ == "__main__": if __name__ == "__main__":
# Run the specific test function directly # Run the specific test function directly
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment