-[2025/01] 🔥 SGLang provides day one support for DeepSeek V3/R1 models on NVIDIA and AMD GPUs with DeepSeek-specific optimizations. ([instructions](https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3), [AMD blog](https://www.amd.com/en/developer/resources/technical-articles/amd-instinct-gpus-power-deepseek-v3-revolutionizing-ai-development-with-sglang.html), [10+ other companies](https://x.com/lmsysorg/status/1887262321636221412))
-[2024/10] The First SGLang Online Meetup ([slides](https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#the-first-sglang-online-meetup)).
-[2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
-[2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
-[2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).
...
...
@@ -64,7 +64,7 @@ Learn more in the release blogs: [v0.2 blog](https://lmsys.org/blog/2024-07-25-s
## Adoption and Sponsorship
The project has been deployed to large-scale production, generating trillions of tokens every day.
It is supported by the following institutions: AMD, Atlas Cloud, Baseten, Cursor, DataCrunch, Etched, Google Cloud, Hyperbolic, Iflytek, Jam & Tea Studios, LinkedIn, LMSYS, Meituan, Nebius, Novita AI, NVIDIA, Oracle, RunPod, Stanford, UC Berkeley, UCLA, xAI, and 01.AI.
It is supported by the following institutions: AMD, Atlas Cloud, Baseten, Cursor, DataCrunch, Etched, Google Cloud, Hyperbolic, Iflytek, InnoMatrix, Jam & Tea Studios, LinkedIn, LMSYS, Meituan, Nebius, Novita AI, NVIDIA, Oracle, RunPod, Stanford, UC Berkeley, UCLA, xAI, and 01.AI.