Unverified Commit e782eb7e authored by Yineng Zhang's avatar Yineng Zhang Committed by GitHub
Browse files

chore: bump v0.4.3.post1 (#3638)

parent e319153b
# Usage (to build SGLang ROCm docker image):
# docker build --build-arg SGL_BRANCH=v0.4.3 -t v0.4.3-rocm630 -f Dockerfile.rocm .
# docker build --build-arg SGL_BRANCH=v0.4.3.post1 -t v0.4.3.post1-rocm630 -f Dockerfile.rocm .
# default base image
ARG BASE_IMAGE="rocm/vllm-dev:20250114"
......
......@@ -11,9 +11,9 @@ docker pull nvidia/cuda:12.1.1-devel-ubuntu22.04
# Nvidia
docker run --shm-size 128g -it -v /tmp/huggingface:/hf_home --gpus all nvidia/cuda:12.1.1-devel-ubuntu22.04 /bin/bash
# AMD
docker run --rm --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128g -it -v /tmp/huggingface:/hf_home lmsysorg/sglang:v0.4.3-rocm630 /bin/bash
docker run --rm --device=/dev/kfd --device=/dev/dri --group-add video --shm-size 128g -it -v /tmp/huggingface:/hf_home lmsysorg/sglang:v0.4.3.post1-rocm630 /bin/bash
# AMD just the last 2 GPUs
docker run --rm --device=/dev/kfd --device=/dev/dri/renderD176 --device=/dev/dri/renderD184 --group-add video --shm-size 128g -it -v /tmp/huggingface:/hf_home lmsysorg/sglang:v0.4.3-rocm630 /bin/bash
docker run --rm --device=/dev/kfd --device=/dev/dri/renderD176 --device=/dev/dri/renderD184 --group-add video --shm-size 128g -it -v /tmp/huggingface:/hf_home lmsysorg/sglang:v0.4.3.post1-rocm630 /bin/bash
```
### Step 2: Configure the runner by `config.sh`
......
......@@ -6,7 +6,7 @@ You can install SGLang using any of the methods below. For running DeepSeek V3/R
```
pip install --upgrade pip
pip install sgl-kernel --force-reinstall --no-deps
pip install "sglang[all]>=0.4.3" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
pip install "sglang[all]>=0.4.3.post1" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
```
Note: SGLang currently uses torch 2.5, so you need to install the flashinfer version for torch 2.5. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html). Please note that the package currently used by FlashInfer is named `flashinfer-python`, not `flashinfer`.
......@@ -19,7 +19,7 @@ If you experience an error like `OSError: CUDA_HOME environment variable is not
## Method 2: From source
```
# Use the last release branch
git clone -b v0.4.3 https://github.com/sgl-project/sglang.git
git clone -b v0.4.3.post1 https://github.com/sgl-project/sglang.git
cd sglang
pip install --upgrade pip
......@@ -35,7 +35,7 @@ Note: To AMD ROCm system with Instinct/MI GPUs, do following instead:
```
# Use the last release branch
git clone -b v0.4.3 https://github.com/sgl-project/sglang.git
git clone -b v0.4.3.post1 https://github.com/sgl-project/sglang.git
cd sglang
pip install --upgrade pip
......@@ -63,7 +63,7 @@ docker run --gpus all \
Note: To AMD ROCm system with Instinct/MI GPUs, it is recommended to use `docker/Dockerfile.rocm` to build images, example and usage as below:
```bash
docker build --build-arg SGL_BRANCH=v0.4.3 -t v0.4.3-rocm630 -f Dockerfile.rocm .
docker build --build-arg SGL_BRANCH=v0.4.3.post1 -t v0.4.3.post1-rocm630 -f Dockerfile.rocm .
alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/dri --ipc=host \
--shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
......@@ -72,11 +72,11 @@ alias drun='docker run -it --rm --network=host --device=/dev/kfd --device=/dev/d
drun -p 30000:30000 \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HF_TOKEN=<secret>" \
v0.4.3-rocm630 \
v0.4.3.post1-rocm630 \
python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
# Till flashinfer backend available, --attention-backend triton --sampling-backend pytorch are set by default
drun v0.4.3-rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
drun v0.4.3.post1-rocm630 python3 -m sglang.bench_one_batch --batch-size 32 --input 1024 --output 128 --model amd/Meta-Llama-3.1-8B-Instruct-FP8-KV --tp 8 --quantization fp8
```
## Method 4: Using docker compose
......
......@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "sglang"
version = "0.4.3"
version = "0.4.3.post1"
description = "SGLang is yet another fast serving framework for large language models and vision language models."
readme = "README.md"
requires-python = ">=3.8"
......
__version__ = "0.4.3"
__version__ = "0.4.3.post1"
......@@ -141,6 +141,8 @@ class TestDeepseekV3MTP(unittest.TestCase):
metrics = run_eval_few_shot_gsm8k(args)
print(metrics)
self.assertGreater(metrics["accuracy"], 0.62)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment