Unverified Commit de553334 authored by Ke Bao's avatar Ke Bao Committed by GitHub
Browse files

Update Triton extend backend interface (#3309)

parent 7aad8d18
......@@ -17,12 +17,10 @@ class DoubleSparseAttnBackend(AttentionBackend):
def __init__(self, model_runner: ModelRunner):
# Lazy import to avoid the initialization of cuda context
from sglang.srt.layers.attention.triton_ops.double_sparsity_attention import (
extend_attention_fwd,
flash_decode_attention_fwd,
flash_decode_sparse_attention_fwd,
)
from sglang.srt.layers.attention.triton_ops.extend_attention import (
extend_attention_fwd,
)
super().__init__()
......
......@@ -37,6 +37,9 @@ class TritonAttnBackend(AttentionBackend):
(max_bs + 1,), dtype=torch.int32, device=model_runner.device
)
self.req_to_token = model_runner.req_to_token_pool.req_to_token
self.qo_indptr = torch.zeros(
(max_bs + 1,), dtype=torch.int32, device=model_runner.device
)
self.num_head = (
model_runner.model_config.num_attention_heads // get_attention_tp_size()
......@@ -54,6 +57,9 @@ class TritonAttnBackend(AttentionBackend):
def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init auxiliary variables for triton attention backend."""
bs = forward_batch.batch_size
kv_indptr = self.kv_indptr
if forward_batch.forward_mode.is_decode():
attn_logits = torch.empty(
(
......@@ -68,31 +74,59 @@ class TritonAttnBackend(AttentionBackend):
max_extend_len = None
kv_indptr = self.kv_indptr
bs = len(forward_batch.req_pool_indices)
kv_indptr[1 : bs + 1] = torch.cumsum(forward_batch.seq_lens, dim=0)
kv_indptr = kv_indptr[: bs + 1]
kv_indices = torch.empty(
forward_batch.seq_lens_sum, dtype=torch.int32, device="cuda"
forward_batch.seq_lens_sum, dtype=torch.int32, device=self.device
)
create_flashinfer_kv_indices_triton[(bs,)](
forward_batch.req_to_token_pool.req_to_token,
self.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
kv_indptr,
None,
kv_indices,
forward_batch.req_to_token_pool.req_to_token.stride(0),
self.req_to_token.stride(0),
)
qo_indptr = None
custom_mask = None
else:
kv_indptr[1 : bs + 1] = torch.cumsum(
forward_batch.extend_prefix_lens, dim=0
)
kv_indptr = kv_indptr[: bs + 1]
kv_indices = torch.empty(
forward_batch.extend_prefix_lens.sum().item(),
dtype=torch.int32,
device=self.device,
)
create_flashinfer_kv_indices_triton[(bs,)](
self.req_to_token,
forward_batch.req_pool_indices,
forward_batch.extend_prefix_lens,
kv_indptr,
None,
kv_indices,
self.req_to_token.stride(0),
)
qo_indptr = self.qo_indptr
qo_indptr[1 : bs + 1] = torch.cumsum(forward_batch.extend_seq_lens, dim=0)
qo_indptr = qo_indptr[: bs + 1]
custom_mask = None
attn_logits = None
max_extend_len = torch.max(forward_batch.extend_seq_lens).item()
kv_indptr = None
kv_indices = None
self.forward_metadata = attn_logits, max_extend_len, kv_indptr, kv_indices
self.forward_metadata = (
attn_logits,
max_extend_len,
kv_indptr,
kv_indices,
qo_indptr,
custom_mask,
)
def init_cuda_graph_state(self, max_bs: int):
self.cuda_graph_max_total_num_tokens = max_bs * self.cuda_graph_max_seq_len
......@@ -144,6 +178,8 @@ class TritonAttnBackend(AttentionBackend):
None,
kv_indptr,
kv_indices,
None,
None,
)
def init_forward_metadata_replay_cuda_graph(
......@@ -197,7 +233,9 @@ class TritonAttnBackend(AttentionBackend):
layer, forward_batch.out_cache_loc, k, v
)
_, max_extend_len, _, _ = self.forward_metadata
_, max_extend_len, kv_indptr, kv_indices, qo_indptr, custom_mask = (
self.forward_metadata
)
self.extend_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
k.contiguous(),
......@@ -205,11 +243,9 @@ class TritonAttnBackend(AttentionBackend):
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id),
forward_batch.token_to_kv_pool.get_value_buffer(layer.layer_id),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
forward_batch.extend_seq_lens,
forward_batch.extend_start_loc,
qo_indptr,
kv_indptr,
kv_indices,
max_extend_len,
layer.scaling,
layer.logit_cap,
......@@ -235,7 +271,7 @@ class TritonAttnBackend(AttentionBackend):
else:
o = torch.empty_like(q)
attn_logits, _, kv_indptr, kv_indices = self.forward_metadata
attn_logits, _, kv_indptr, kv_indices, _, _ = self.forward_metadata
if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(
......
......@@ -3,6 +3,13 @@ import triton
import triton.language as tl
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.utils import is_hip
is_cuda_available = torch.cuda.is_available()
if is_cuda_available:
CUDA_CAPABILITY = torch.cuda.get_device_capability()
is_hip_ = is_hip()
if global_server_args_dict.get("attention_reduce_in_fp32", False):
REDUCE_TRITON_TYPE = tl.float32
......@@ -274,9 +281,6 @@ def flash_decode_stage2(mid_out, mid_out_logexpsum, B_Seqlen, O, block_seq):
return
import torch
def flash_decode_attention_fwd(
q,
k_buffer,
......@@ -770,3 +774,333 @@ def flash_decode_sparse_attention_fwd(
)
sparse_flash_decode_stage3(heavy_token_num, mid_out, mid_o_logexpsum, o, BLOCK_SEQ)
# Extend attention kernel for Double Sparsity
# Moved from https://github.com/sgl-project/sglang/blob/v0.4.2.post1/python/sglang/srt/layers/attention/triton_ops/extend_attention.py
@triton.jit
def _fwd_kernel(
Q_Extend,
K_Extend,
V_Extend,
O_Extend,
K_Buffer,
V_Buffer,
Req_to_tokens,
B_req_idx,
B_Seq_Len,
B_Start_Loc_Extend,
B_Seq_Len_Extend,
sm_scale,
kv_group_num,
stride_qbs,
stride_qh,
stride_kbs,
stride_kh,
stride_vbs,
stride_vh,
stride_obs,
stride_oh,
stride_buf_kbs,
stride_buf_kh,
stride_buf_vbs,
stride_buf_vh,
stride_req_to_tokens_b,
logit_cap: tl.constexpr,
Lq: tl.constexpr,
Lv: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_DPE: tl.constexpr,
BLOCK_DV: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
):
cur_seq = tl.program_id(0)
cur_head = tl.program_id(1)
cur_block_m = tl.program_id(2)
cur_kv_head = cur_head // kv_group_num
cur_seq_len = tl.load(B_Seq_Len + cur_seq)
cur_seq_len_extend = tl.load(B_Seq_Len_Extend + cur_seq)
cur_seq_len_prefix = cur_seq_len - cur_seq_len_extend
cur_seq_prefix_start_in_loc = 0
cur_seq_extend_start_contiguous = tl.load(B_Start_Loc_Extend + cur_seq)
cur_batch_req_idx = tl.load(B_req_idx + cur_seq)
offs_d = tl.arange(0, BLOCK_DMODEL)
offs_dv = tl.arange(0, BLOCK_DV)
offs_m = tl.arange(0, BLOCK_M)
mask_m = (cur_block_m * BLOCK_M + offs_m) < cur_seq_len_extend
mask_d = offs_d < Lq
mask_dv = offs_dv < Lv
offs_q = (
(cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None])
* stride_qbs
+ cur_head * stride_qh
+ offs_d[None, :]
)
q = tl.load(
Q_Extend + offs_q, mask=(mask_m[:, None]) & (mask_d[None, :]), other=0.0
)
if BLOCK_DPE > 0:
offs_dpe = BLOCK_DMODEL + tl.arange(0, BLOCK_DPE)
offs_qpe = (
(cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None])
* stride_qbs
+ cur_head * stride_qh
+ offs_dpe[None, :]
)
qpe = tl.load(Q_Extend + offs_qpe, mask=mask_m[:, None], other=0.0)
# stage 1: compute scores with prefix
offs_n = tl.arange(0, BLOCK_N)
acc = tl.zeros([BLOCK_M, BLOCK_DV], dtype=tl.float32)
deno = tl.zeros([BLOCK_M], dtype=tl.float32)
e_max = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
for start_n in range(0, cur_seq_len_prefix, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
mask_n = (start_n + offs_n) < cur_seq_len_prefix
offs_b_loc_prefix = cur_batch_req_idx * stride_req_to_tokens_b + (
cur_seq_prefix_start_in_loc + start_n + offs_n
)
offs_kv_loc = tl.load(Req_to_tokens + offs_b_loc_prefix, mask=mask_n, other=0)
# load k in transposed way
offs_buf_k = (
offs_kv_loc[None, :] * stride_buf_kbs
+ cur_kv_head * stride_buf_kh
+ offs_d[:, None]
)
k = tl.load(
K_Buffer + offs_buf_k, mask=(mask_n[None, :]) & (mask_d[:, None]), other=0.0
)
qk = tl.dot(q.to(k.dtype), k)
if BLOCK_DPE > 0:
offs_kpe = (
offs_kv_loc[None, :] * stride_buf_kbs
+ cur_kv_head * stride_buf_kh
+ offs_dpe[:, None]
)
kpe = tl.load(
K_Buffer + offs_kpe,
mask=mask_n[None, :],
other=0.0,
)
qk += tl.dot(qpe.to(kpe.dtype), kpe)
qk *= sm_scale
if logit_cap > 0:
qk = logit_cap * tanh(qk / logit_cap)
qk = tl.where(mask_m[:, None] & mask_n[None, :], qk, float("-inf"))
n_e_max = tl.maximum(tl.max(qk, 1), e_max)
re_scale = tl.exp(e_max - n_e_max)
p = tl.exp(qk - n_e_max[:, None])
deno = deno * re_scale + tl.sum(p, 1)
offs_buf_v = (
offs_kv_loc[:, None] * stride_buf_vbs
+ cur_kv_head * stride_buf_vh
+ offs_dv[None, :]
)
v = tl.load(
V_Buffer + offs_buf_v, mask=mask_n[:, None] & mask_dv[None, :], other=0.0
)
p = p.to(v.dtype)
acc = acc * re_scale[:, None] + tl.dot(p, v)
e_max = n_e_max
# stage 2: compute the trianlge part
cur_block_m_end = tl.minimum(cur_seq_len_extend, (cur_block_m + 1) * BLOCK_M)
for start_n in range(0, cur_block_m_end, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
mask_n = (start_n + offs_n) < cur_block_m_end
# load k in transposed way
offs_k = (
(cur_seq_extend_start_contiguous + start_n + offs_n[None, :]) * stride_kbs
+ cur_kv_head * stride_kh
+ offs_d[:, None]
)
k = tl.load(
K_Extend + offs_k, mask=(mask_n[None, :]) & (mask_d[:, None]), other=0.0
)
qk = tl.dot(q, k, out_dtype=tl.float32)
if BLOCK_DPE > 0:
offs_kpe = (
(cur_seq_extend_start_contiguous + start_n + offs_n[None, :])
* stride_kbs
+ cur_kv_head * stride_kh
+ offs_dpe[:, None]
)
kpe = tl.load(
K_Extend + offs_kpe,
mask=mask_n[None, :],
other=0.0,
)
qk += tl.dot(qpe, kpe)
qk *= sm_scale
if logit_cap > 0:
qk = logit_cap * tanh(qk / logit_cap)
mask_causual = (cur_block_m * BLOCK_M + offs_m[:, None]) >= (
start_n + offs_n[None, :]
)
mask_causual &= mask_m[:, None] & mask_n[None, :]
qk = tl.where(mask_causual, qk, float("-inf"))
n_e_max = tl.maximum(tl.max(qk, 1), e_max)
re_scale = tl.exp(e_max - n_e_max)
p = tl.exp(qk - n_e_max[:, None])
deno = deno * re_scale + tl.sum(p, 1)
offs_v = (
(cur_seq_extend_start_contiguous + start_n + offs_n[:, None]) * stride_vbs
+ cur_kv_head * stride_vh
+ offs_dv[None, :]
)
v = tl.load(
V_Extend + offs_v, mask=mask_n[:, None] & mask_dv[None, :], other=0.0
)
p = p.to(v.dtype)
acc = acc * re_scale[:, None] + tl.dot(p, v)
e_max = n_e_max
offs_o = (
(cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None])
* stride_obs
+ cur_head * stride_oh
+ offs_dv[None, :]
)
tl.store(
O_Extend + offs_o, acc / deno[:, None], mask=mask_m[:, None] & mask_dv[None, :]
)
def extend_attention_fwd(
q_extend,
k_extend,
v_extend,
o_extend,
k_buffer,
v_buffer,
req_to_tokens,
b_req_idx,
b_seq_len,
b_seq_len_extend,
b_start_loc_extend,
max_len_extend,
sm_scale=None,
logit_cap=0.0,
):
"""
q_extend, k_extend, v_extend, o_extend: contiguous tensors
k_buffer, v_buffer: (prefix + extend) tensors in mem_manager
"""
Lq, Lk, Lv = (
q_extend.shape[-1],
k_extend.shape[-1],
v_extend.shape[-1],
)
if Lq == 576:
BLOCK_DMODEL = 512
BLOCK_DPE = 64
elif Lq == 288:
BLOCK_DMODEL = 256
BLOCK_DPE = 32
elif Lq == 192:
BLOCK_DMODEL = 128
BLOCK_DPE = 64
else:
BLOCK_DMODEL = triton.next_power_of_2(Lq)
BLOCK_DPE = 0
BLOCK_DV = triton.next_power_of_2(Lv)
if is_hip_:
BLOCK_M, BLOCK_N = (64, 64)
num_warps = 4
else:
if is_cuda_available and CUDA_CAPABILITY[0] >= 9:
if Lq <= 256:
BLOCK_M, BLOCK_N = (128, 64)
else:
BLOCK_M, BLOCK_N = (32, 64)
elif is_cuda_available and CUDA_CAPABILITY[0] >= 8:
if Lq <= 128:
BLOCK_M, BLOCK_N = (128, 128)
elif Lq <= 256:
BLOCK_M, BLOCK_N = (64, 64)
else:
BLOCK_M, BLOCK_N = (32, 64)
else:
BLOCK_M, BLOCK_N = (64, 64) if Lq <= 128 else (32, 32)
num_warps = 4 if Lk <= 64 else 8
sm_scale = sm_scale or 1.0 / (Lq**0.5)
batch_size, head_num = b_seq_len.shape[0], q_extend.shape[1]
kv_group_num = q_extend.shape[1] // k_extend.shape[1]
grid = (batch_size, head_num, triton.cdiv(max_len_extend, BLOCK_M))
num_stages = 1
extra_kargs = {}
if is_hip_:
extra_kargs = {"waves_per_eu": 4, "matrix_instr_nonkdim": 16, "kpack": 2}
_fwd_kernel[grid](
q_extend,
k_extend,
v_extend,
o_extend,
k_buffer,
v_buffer,
req_to_tokens,
b_req_idx,
b_seq_len,
b_start_loc_extend,
b_seq_len_extend,
sm_scale,
kv_group_num,
q_extend.stride(0),
q_extend.stride(1),
k_extend.stride(0),
k_extend.stride(1),
v_extend.stride(0),
v_extend.stride(1),
o_extend.stride(0),
o_extend.stride(1),
k_buffer.stride(0),
k_buffer.stride(1),
v_buffer.stride(0),
v_buffer.stride(1),
req_to_tokens.stride(0),
logit_cap=logit_cap,
BLOCK_DMODEL=BLOCK_DMODEL,
BLOCK_DPE=BLOCK_DPE,
BLOCK_DV=BLOCK_DV,
BLOCK_M=BLOCK_M,
BLOCK_N=BLOCK_N,
Lq=Lq,
Lv=Lv,
num_warps=num_warps,
num_stages=num_stages,
**extra_kargs,
)
......@@ -46,11 +46,9 @@ def _fwd_kernel(
O_Extend,
K_Buffer,
V_Buffer,
Req_to_tokens,
B_req_idx,
B_Seq_Len,
B_Start_Loc_Extend,
B_Seq_Len_Extend,
qo_indptr,
kv_indptr,
kv_indices,
sm_scale,
kv_group_num,
stride_qbs,
......@@ -65,7 +63,6 @@ def _fwd_kernel(
stride_buf_kh,
stride_buf_vbs,
stride_buf_vh,
stride_req_to_tokens_b,
logit_cap: tl.constexpr,
Lq: tl.constexpr,
Lv: tl.constexpr,
......@@ -80,13 +77,10 @@ def _fwd_kernel(
cur_block_m = tl.program_id(2)
cur_kv_head = cur_head // kv_group_num
cur_seq_len = tl.load(B_Seq_Len + cur_seq)
cur_seq_len_extend = tl.load(B_Seq_Len_Extend + cur_seq)
cur_seq_len_prefix = cur_seq_len - cur_seq_len_extend
cur_seq_prefix_start_in_loc = 0
cur_seq_extend_start_contiguous = tl.load(B_Start_Loc_Extend + cur_seq)
cur_batch_req_idx = tl.load(B_req_idx + cur_seq)
cur_seq_extend_start_idx = tl.load(qo_indptr + cur_seq)
cur_seq_len_extend = tl.load(qo_indptr + cur_seq + 1) - cur_seq_extend_start_idx
cur_seq_kv_start_idx = tl.load(kv_indptr + cur_seq)
cur_seq_len_prefix = tl.load(kv_indptr + cur_seq + 1) - cur_seq_kv_start_idx
offs_d = tl.arange(0, BLOCK_DMODEL)
offs_dv = tl.arange(0, BLOCK_DV)
......@@ -97,7 +91,7 @@ def _fwd_kernel(
mask_dv = offs_dv < Lv
offs_q = (
(cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None])
(cur_seq_extend_start_idx + cur_block_m * BLOCK_M + offs_m[:, None])
* stride_qbs
+ cur_head * stride_qh
+ offs_d[None, :]
......@@ -109,7 +103,7 @@ def _fwd_kernel(
if BLOCK_DPE > 0:
offs_dpe = BLOCK_DMODEL + tl.arange(0, BLOCK_DPE)
offs_qpe = (
(cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None])
(cur_seq_extend_start_idx + cur_block_m * BLOCK_M + offs_m[:, None])
* stride_qbs
+ cur_head * stride_qh
+ offs_dpe[None, :]
......@@ -126,10 +120,9 @@ def _fwd_kernel(
for start_n in range(0, cur_seq_len_prefix, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
mask_n = (start_n + offs_n) < cur_seq_len_prefix
offs_b_loc_prefix = cur_batch_req_idx * stride_req_to_tokens_b + (
cur_seq_prefix_start_in_loc + start_n + offs_n
offs_kv_loc = tl.load(
kv_indices + cur_seq_kv_start_idx + start_n + offs_n, mask=mask_n, other=0
)
offs_kv_loc = tl.load(Req_to_tokens + offs_b_loc_prefix, mask=mask_n, other=0)
# load k in transposed way
offs_buf_k = (
......@@ -188,7 +181,7 @@ def _fwd_kernel(
# load k in transposed way
offs_k = (
(cur_seq_extend_start_contiguous + start_n + offs_n[None, :]) * stride_kbs
(cur_seq_extend_start_idx + start_n + offs_n[None, :]) * stride_kbs
+ cur_kv_head * stride_kh
+ offs_d[:, None]
)
......@@ -199,8 +192,7 @@ def _fwd_kernel(
qk = tl.dot(q, k, out_dtype=tl.float32)
if BLOCK_DPE > 0:
offs_kpe = (
(cur_seq_extend_start_contiguous + start_n + offs_n[None, :])
* stride_kbs
(cur_seq_extend_start_idx + start_n + offs_n[None, :]) * stride_kbs
+ cur_kv_head * stride_kh
+ offs_dpe[:, None]
)
......@@ -228,7 +220,7 @@ def _fwd_kernel(
deno = deno * re_scale + tl.sum(p, 1)
offs_v = (
(cur_seq_extend_start_contiguous + start_n + offs_n[:, None]) * stride_vbs
(cur_seq_extend_start_idx + start_n + offs_n[:, None]) * stride_vbs
+ cur_kv_head * stride_vh
+ offs_dv[None, :]
)
......@@ -241,7 +233,7 @@ def _fwd_kernel(
e_max = n_e_max
offs_o = (
(cur_seq_extend_start_contiguous + cur_block_m * BLOCK_M + offs_m[:, None])
(cur_seq_extend_start_idx + cur_block_m * BLOCK_M + offs_m[:, None])
* stride_obs
+ cur_head * stride_oh
+ offs_dv[None, :]
......@@ -258,11 +250,9 @@ def extend_attention_fwd(
o_extend,
k_buffer,
v_buffer,
req_to_tokens,
b_req_idx,
b_seq_len,
b_seq_len_extend,
b_start_loc_extend,
qo_indptr,
kv_indptr,
kv_indices,
max_len_extend,
sm_scale=None,
logit_cap=0.0,
......@@ -315,7 +305,7 @@ def extend_attention_fwd(
num_warps = 4 if Lk <= 64 else 8
sm_scale = sm_scale or 1.0 / (Lq**0.5)
batch_size, head_num = b_seq_len.shape[0], q_extend.shape[1]
batch_size, head_num = qo_indptr.shape[0] - 1, q_extend.shape[1]
kv_group_num = q_extend.shape[1] // k_extend.shape[1]
grid = (batch_size, head_num, triton.cdiv(max_len_extend, BLOCK_M))
......@@ -332,11 +322,9 @@ def extend_attention_fwd(
o_extend,
k_buffer,
v_buffer,
req_to_tokens,
b_req_idx,
b_seq_len,
b_start_loc_extend,
b_seq_len_extend,
qo_indptr,
kv_indptr,
kv_indices,
sm_scale,
kv_group_num,
q_extend.stride(0),
......@@ -351,7 +339,6 @@ def extend_attention_fwd(
k_buffer.stride(1),
v_buffer.stride(0),
v_buffer.stride(1),
req_to_tokens.stride(0),
logit_cap=logit_cap,
BLOCK_DMODEL=BLOCK_DMODEL,
BLOCK_DPE=BLOCK_DPE,
......
......@@ -45,16 +45,20 @@ class TestTritonAttention(unittest.TestCase):
max_len_in_batch = torch.max(b_seq_len, 0)[0].item()
b_req_idx = torch.arange(B, dtype=torch.int32, device="cuda")
req_to_tokens = torch.empty(
(B, max_len_in_batch), dtype=torch.int32, device="cuda"
)
b_start_loc = torch.zeros((B,), dtype=torch.int32, device="cuda")
b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0)
b_start_loc_extend = torch.zeros((B,), dtype=torch.int32, device="cuda")
b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)
kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len_prefix[:B], dim=0)
kv_indices = torch.zeros(
(b_seq_len_prefix.sum().item(),), dtype=torch.int32, device="cuda"
)
for i in range(B):
req_to_tokens[i, : b_seq_len[i]] = torch.arange(
b_start_loc[i], b_start_loc[i] + b_seq_len[i]
kv_indices[kv_indptr[i] : kv_indptr[i + 1]] = torch.arange(
b_start_loc[i], b_start_loc[i] + b_seq_len_prefix[i]
)
total_token_num = torch.sum(b_seq_len).item()
......@@ -90,9 +94,10 @@ class TestTritonAttention(unittest.TestCase):
)
b_seq_len_extend = b_seq_len - b_seq_len_prefix
b_start_loc_extend = torch.zeros_like(b_seq_len)
b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)
max_len_extend = torch.max(b_seq_len_extend, 0)[0].item()
qo_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
qo_indptr[1 : B + 1] = torch.cumsum(b_seq_len_extend[:B], dim=0)
extend_attention_fwd(
q_extend,
k_extend,
......@@ -100,11 +105,9 @@ class TestTritonAttention(unittest.TestCase):
o_extend,
k_buffer,
v_buffer,
req_to_tokens,
b_req_idx,
b_seq_len,
b_seq_len_extend,
b_start_loc_extend,
qo_indptr,
kv_indptr,
kv_indices,
max_len_extend,
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment