Unverified Commit d26ca84f authored by Praneth Paruchuri's avatar Praneth Paruchuri Committed by GitHub
Browse files

Support bailing moe (#8680)

parent 8128e08d
......@@ -47,5 +47,6 @@ in the GitHub search bar.
| **MiMo** (7B series) | `XiaomiMiMo/MiMo-7B-RL` | Xiaomi's reasoning-optimized model series, leverages Multiple-Token Prediction for faster inference. |
| **Arcee AFM-4.5B** | `arcee-ai/AFM-4.5B-Base` | Arcee's foundational model series for real world reliability and edge deployments. |
| **Persimmon** (8B) | `adept/persimmon-8b-chat` | Adept’s open 8B model with a 16K context window and fast inference; trained for broad usability and licensed under Apache 2.0. |
| **Ling** (16.8B–290B) | `inclusionAI/Ling-lite`, `inclusionAI/Ling-plus` | InclusionAI’s open MoE models. Ling-Lite has 16.8B total / 2.75B active parameters, and Ling-Plus has 290B total / 28.8B active parameters. They are designed for high performance on NLP and complex reasoning tasks. |
| **Granite 3.0, 3.1** (IBM) | `ibm-granite/granite-3.1-8b-instruct` | IBM's open dense foundation models optimized for reasoning, code, and business AI use cases. Integrated with Red Hat and watsonx systems. |
| **Granite 3.0 MoE** (IBM) | `ibm-granite/granite-3.0-3b-a800m-instruct` | IBM’s Mixture-of-Experts models offering strong performance with cost-efficiency. MoE expert routing designed for enterprise deployment at scale. |
# Copyright 2023-2024 SGLang Team
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/bailing_moe.py
from collections.abc import Iterable
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from sglang.srt.distributed import (
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce,
)
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
from sglang.srt.layers.moe.topk import TopK
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix, make_layers
class BailingAttention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
self.total_num_kv_heads = config.num_key_value_heads
assert self.total_num_heads % tp_size == 0
assert self.total_num_kv_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.head_dim = config.head_dim or (self.hidden_size // self.total_num_heads)
self.q_size = self.num_heads * self.head_dim
self.num_kv_heads = self.total_num_kv_heads // tp_size
self.kv_size = self.num_kv_heads * self.head_dim
self.scale = self.head_dim**-0.5
self.query_key_value = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=(config.use_bias or config.use_qkv_bias),
quant_config=quant_config,
prefix=add_prefix("query_key_value", prefix),
)
self.dense = RowParallelLinear(
self.total_num_heads * self.head_dim,
self.hidden_size,
bias=config.use_bias,
quant_config=quant_config,
prefix=add_prefix("dense", prefix),
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scale,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=config.max_position_embeddings,
base=config.rope_theta,
is_neox_style=True,
rope_scaling=config.rope_scaling,
)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
context_layer = self.attn(q, k, v, forward_batch)
attn_output, _ = self.dense(context_layer)
return attn_output
class BailingMLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
reduce_results: Optional[bool] = True,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
config.hidden_size,
[intermediate_size] * 2,
bias=config.use_bias,
quant_config=quant_config,
prefix=add_prefix("gate_up_proj", prefix),
)
self.down_proj = RowParallelLinear(
intermediate_size,
config.hidden_size,
bias=config.use_bias,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=add_prefix("down_proj", prefix),
)
self.act_fn = SiluAndMul()
def forward(self, x):
x, _ = self.gate_up_proj(x)
x = self.act_fn(x)
x, _ = self.down_proj(x)
return x
class BailingMoE(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_id: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.hidden_size = config.hidden_size
self.num_shared_experts = config.num_shared_experts
self.norm_expert_prob = config.norm_topk_prob
self.moe_intermediate_size = config.moe_intermediate_size
self.gate = ReplicatedLinear(
self.hidden_size, self.num_experts, bias=False, quant_config=None
)
self.topk = TopK(top_k=self.top_k, renormalize=self.norm_expert_prob)
self.experts = FusedMoE(
num_experts=self.num_experts,
top_k=self.top_k,
layer_id=layer_id,
hidden_size=self.hidden_size,
intermediate_size=self.moe_intermediate_size,
reduce_results=False,
quant_config=quant_config,
prefix=add_prefix("experts", prefix),
)
if self.num_shared_experts > 0:
shared_intermediate_size = (
self.moe_intermediate_size * self.num_shared_experts
)
self.shared_experts = BailingMLP(
intermediate_size=shared_intermediate_size,
config=config,
quant_config=quant_config,
reduce_results=False,
prefix=add_prefix("shared_experts", prefix),
)
else:
self.shared_experts = None
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_shape = hidden_states.shape
hidden_states_flat = hidden_states.view(-1, self.hidden_size)
shared_output = None
if self.shared_experts is not None:
shared_output = self.shared_experts(hidden_states_flat)
router_logits, _ = self.gate(hidden_states_flat)
topk_output = self.topk(hidden_states_flat, router_logits)
final_hidden_states = self.experts(hidden_states_flat, topk_output)
if shared_output is not None:
final_hidden_states = final_hidden_states + shared_output
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states.view(orig_shape)
class BailingMoeBlock(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_id: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attention = BailingAttention(
config, layer_id, quant_config, prefix=add_prefix("attention", prefix)
)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
self.mlp = BailingMoE(
config=config,
layer_id=layer_id,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor,
residual: Optional[torch.Tensor],
forward_batch: ForwardBatch,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Pre-normalization and residual connection for the attention block
if residual is None:
residual = hidden_states
normed_hidden_states = self.input_layernorm(hidden_states)
else:
normed_hidden_states, residual = self.input_layernorm(
hidden_states, residual
)
attn_output = self.attention(
hidden_states=normed_hidden_states,
position_ids=position_ids,
forward_batch=forward_batch,
)
# Pre-normalization and residual connection for the MLP block
normed_hidden_states, residual = self.post_attention_layernorm(
attn_output, residual
)
mlp_output = self.mlp(normed_hidden_states)
return mlp_output, residual
class BailingMoeModel(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_dim = config.hidden_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
prefix=add_prefix("embed_tokens", prefix),
)
self.embedding_dropout = torch.nn.Dropout(config.embedding_dropout)
self.layers = make_layers(
config.num_hidden_layers,
lambda idx, prefix: BailingMoeBlock(
config=config,
layer_id=idx,
quant_config=quant_config,
prefix=prefix,
),
prefix=add_prefix("layers", prefix),
)
self.norm = RMSNorm(self.embed_dim, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds
residual = None
for layer in self.layers:
hidden_states, residual = layer(
hidden_states,
position_ids,
residual,
forward_batch,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class BailingMoeForCausalLM(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.model = BailingMoeModel(config=config, quant_config=quant_config)
self.lm_head = ParallelLMHead(
num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
quant_config=quant_config,
)
if config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(config)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, forward_batch, inputs_embeds)
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.num_experts,
)
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if (
hasattr(self.config, "norm_head")
and self.config.norm_head
and "lm_head.weight" in name
):
loaded_weight = F.normalize(loaded_weight, dim=0, p=2, eps=1e-7)
if "model.word_embeddings.weight" == name:
name = "model.embed_tokens.weight"
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name in name and "mlp.experts" not in name:
full_param_name = name.replace(weight_name, param_name)
param = params_dict[full_param_name]
param.weight_loader(param, loaded_weight, shard_id)
break
else:
for p_name, w_name, e_id, s_id in expert_params_mapping:
if w_name in name and "mlp.experts" in name:
full_param_name = name.replace(w_name, p_name)
param = params_dict[full_param_name]
param.weight_loader(
param,
loaded_weight,
full_param_name,
shard_id=s_id,
expert_id=e_id,
)
break
else:
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
EntryClass = BailingMoeForCausalLM
......@@ -67,6 +67,7 @@ ALL_MODELS = [
ModelCase("openai-community/gpt2"),
ModelCase("microsoft/phi-1_5", trust_remote_code=True),
ModelCase("adept/persimmon-8b-chat"),
ModelCase("inclusionAI/Ling-lite", trust_remote_code=True),
ModelCase("microsoft/Phi-3-small-8k-instruct", trust_remote_code=True),
ModelCase("allenai/OLMo-2-1124-7B-Instruct", skip_long_prompt=True),
ModelCase("ibm-granite/granite-3.0-2b-instruct", skip_long_prompt=True),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment