Unverified Commit ce832d70 authored by Lifu Huang's avatar Lifu Huang Committed by GitHub
Browse files

Add env var to control custom Triton kernel cache and set CSGMV as default backend. (#12176)

parent 88596739
......@@ -53,7 +53,7 @@ if __name__ == "__main__":
parser.add_argument(
"--lora-backend",
type=str,
default="triton",
default="csgmv",
)
parser.add_argument(
"--tp-size",
......
......@@ -180,6 +180,7 @@ class Envs:
# Triton
SGLANG_TRITON_DECODE_ATTN_STATIC_KV_SPLITS = EnvBool(False)
SGLANG_USE_CUSTOM_TRITON_KERNEL_CACHE = EnvBool(False)
# Torch Compile
SGLANG_ENABLE_TORCH_COMPILE = EnvBool(False)
......
......@@ -331,7 +331,7 @@ class ServerArgs:
max_loaded_loras: Optional[int] = None
max_loras_per_batch: int = 8
lora_eviction_policy: str = "lru"
lora_backend: str = "triton"
lora_backend: str = "csgmv"
max_lora_chunk_size: Optional[int] = 16
# Kernel backend
......
......@@ -3571,7 +3571,17 @@ def cached_triton_kernel(key_fn=None):
"""
def decorator(fn):
return CachedKernel(fn, key_fn)
if envs.SGLANG_USE_CUSTOM_TRITON_KERNEL_CACHE.get():
logger.debug(
f"{envs.SGLANG_USE_CUSTOM_TRITON_KERNEL_CACHE.name} = True. Using custom triton kernel cache."
)
return CachedKernel(fn, key_fn)
else:
# Fallback to the native triton cache.
logger.debug(
f"{envs.SGLANG_USE_CUSTOM_TRITON_KERNEL_CACHE.name} = False. Using native triton kernel cache."
)
return fn
return decorator
......
......@@ -511,7 +511,7 @@ class SRTRunner:
attention_backend: Optional[str] = None,
prefill_attention_backend: Optional[str] = None,
decode_attention_backend: Optional[str] = None,
lora_backend: str = "triton",
lora_backend: str = "csgmv",
disable_cuda_graph: bool = False,
disable_radix_cache: bool = False,
chunked_prefill_size: Optional[int] = None,
......
......@@ -81,13 +81,12 @@ class TestLoRA(CustomTestCase):
for model_case in model_cases:
for torch_dtype in TORCH_DTYPES:
max_new_tokens = 32
backend = "triton"
base_path = model_case.base
lora_adapter_paths = [a.name for a in model_case.adaptors]
assert len(lora_adapter_paths) >= 2
print(
f"\n========== Testing multiple batches on base '{base_path}' with backend={backend}, dtype={torch_dtype} ---"
f"\n========== Testing multiple batches on base '{base_path}', dtype={torch_dtype} ---"
)
# Initialize runners
......@@ -97,7 +96,6 @@ class TestLoRA(CustomTestCase):
model_type="generation",
lora_paths=[lora_adapter_paths[0], lora_adapter_paths[1]],
max_loras_per_batch=len(lora_adapter_paths) + 1,
lora_backend=backend,
sleep_on_idle=True, # Eliminate non-determinism by forcing all requests to be processed in one batch.
attention_backend="torch_native",
)
......@@ -142,7 +140,7 @@ class TestLoRA(CustomTestCase):
if rouge_score < rouge_tol:
raise AssertionError(
f"ROUGE-L score {rouge_score} below tolerance {rouge_tol} "
f"for base '{base_path}', adaptor '{lora_paths}', backend '{backend}', prompt: '{prompts}...'"
f"for base '{base_path}', adaptor '{lora_paths}', prompt: '{prompts}...'"
)
print(f"--- Batch {i} Comparison Passed --- ")
......
......@@ -62,7 +62,6 @@ class TestLoRACudaGraph(CustomTestCase):
model_case,
torch_dtype,
max_new_tokens=32,
backend="triton",
disable_cuda_graph=True,
test_tag="without_cuda_graph",
)
......@@ -77,7 +76,6 @@ class TestLoRACudaGraph(CustomTestCase):
model_case,
torch_dtype,
max_new_tokens=32,
backend="triton",
disable_cuda_graph=False,
test_tag="cuda_graph_padding",
)
......
......@@ -83,7 +83,6 @@ class TestLoRAEviction(CustomTestCase):
):
REUSED_LORA_NAME = "lora"
max_new_tokens = 256
backend = "triton"
torch_dtype = torch.float16
base_path = BASE_MODEL
assert len(lora_paths) >= 2
......@@ -96,7 +95,6 @@ class TestLoRAEviction(CustomTestCase):
model_type="generation",
lora_paths=initial_lora_paths,
max_loras_per_batch=1,
lora_backend=backend,
enable_lora=True,
max_lora_rank=256,
lora_target_modules=["all"],
......
......@@ -71,7 +71,6 @@ class TestLoRAQwen3(CustomTestCase):
for model_case in model_cases:
for torch_dtype in TORCH_DTYPES:
max_new_tokens = 32
backend = "triton"
base_path = model_case.base
lora_adapter_paths = [a.name for a in model_case.adaptors]
assert len(lora_adapter_paths) >= 2
......@@ -128,7 +127,7 @@ class TestLoRAQwen3(CustomTestCase):
]
print(
f"\n========== Testing multiple batches on base '{base_path}' with backend={backend}, dtype={torch_dtype} ---"
f"\n========== Testing multiple batches on base '{base_path}', dtype={torch_dtype} ---"
)
# Initialize runners
......@@ -139,7 +138,6 @@ class TestLoRAQwen3(CustomTestCase):
model_type="generation",
lora_paths=[lora_adapter_paths[0], lora_adapter_paths[1]],
max_loras_per_batch=len(lora_adapter_paths) + 1,
lora_backend=backend,
sleep_on_idle=True, # Eliminate non-determinism by forcing all requests to be processed in one batch.
attention_backend="torch_native",
)
......@@ -183,7 +181,7 @@ class TestLoRAQwen3(CustomTestCase):
if rouge_score < rouge_tol:
raise AssertionError(
f"ROUGE-L score {rouge_score} below tolerance {rouge_tol} "
f"for base '{base_path}', adaptor '{lora_paths}', backend '{backend}', prompt: '{prompts}...'"
f"for base '{base_path}', adaptor '{lora_paths}', prompt: '{prompts}...'"
)
print(f"--- Batch {i+1} Comparison Passed --- ")
......
......@@ -44,7 +44,6 @@ class TestLoRARadixCache(CustomTestCase):
torch_dtype = torch.float16
max_new_tokens = 32
backend = "triton"
batch_prompts = (
PROMPTS
if not model_case.skip_long_prompt
......@@ -57,7 +56,6 @@ class TestLoRARadixCache(CustomTestCase):
model_case,
torch_dtype,
max_new_tokens=max_new_tokens,
backend=backend,
disable_radix_cache=False,
test_tag="lora-with-radix-cache",
)
......@@ -68,7 +66,6 @@ class TestLoRARadixCache(CustomTestCase):
model_case,
torch_dtype,
max_new_tokens=max_new_tokens,
backend=backend,
disable_radix_cache=True,
test_tag="lora-without-radix-cache",
)
......
......@@ -48,7 +48,6 @@ class TestLoRATP(CustomTestCase):
model_case,
torch_dtype,
max_new_tokens=32,
backend="triton",
test_tag=f"tp={tp_size}",
)
......
......@@ -764,7 +764,7 @@ class LoRAUpdateTestSessionBase:
max_lora_rank: Optional[int],
enable_lora: Optional[bool] = None,
lora_target_modules: Optional[List[str]] = None,
lora_backend: str = "triton",
lora_backend: str = "csgmv",
disable_cuda_graph: bool = False,
cuda_graph_max_bs: int = 4,
):
......
......@@ -14,7 +14,7 @@
import dataclasses
import random
from typing import List
from typing import List, Optional
import torch
......@@ -50,7 +50,7 @@ class LoRAModelCase:
TORCH_DTYPES = [torch.float16]
BACKENDS = ["triton"]
BACKENDS = ["triton", "csgmv"]
DEFAULT_PROMPTS = [
"AI is a field of computer science focused on",
"""
......@@ -135,7 +135,7 @@ def run_lora_test_one_by_one(
model_case: LoRAModelCase,
torch_dtype: torch.dtype,
max_new_tokens: int,
backend: str,
backend: str = "csgmv",
disable_cuda_graph: bool = False,
disable_radix_cache: bool = False,
mem_fraction_static: float = 0.88,
......@@ -283,7 +283,7 @@ def run_lora_test_by_batch(
model_case: LoRAModelCase,
torch_dtype: torch.dtype,
max_new_tokens: int,
backend: str,
backend: str = "csgmv",
disable_cuda_graph: bool = False,
disable_radix_cache: bool = False,
mem_fraction_static: float = 0.88,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment