Unverified Commit ce32bc2b authored by Stefan He's avatar Stefan He Committed by GitHub
Browse files

Extract update_weights from RL Engine to SGLang to keep simplicity and fix torch reduce (#8267)

Co-authored-by: CuiBo 82354186+SuperCB@users.noreply.github.com
Co-authored-by: GeLee 865038696@qq.com
Co-authored-by: 杨睿 yangruipis@163.com
parent e236d8fe
......@@ -41,6 +41,7 @@ from sglang.srt.mem_cache.allocator import BaseTokenToKVPoolAllocator
from sglang.srt.mem_cache.memory_pool import ReqToTokenPool
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.patch_torch import monkey_patch_torch_reductions
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import MultiprocessingSerializer, broadcast_pyobj, set_random_seed
......@@ -278,6 +279,8 @@ class TpModelWorker:
return success, message
def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
monkey_patch_torch_reductions()
success, message = self.model_runner.update_weights_from_tensor(
named_tensors=MultiprocessingSerializer.deserialize(
recv_req.serialized_named_tensors[self.tp_rank]
......
from typing import Optional
import torch
import torch.distributed as dist
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor import DTensor
from sglang.srt.entrypoints.engine import Engine
from sglang.srt.managers.tokenizer_manager import UpdateWeightsFromTensorReqInput
from sglang.srt.model_executor.model_runner import LocalSerializedTensor
from sglang.srt.utils import MultiprocessingSerializer
async def update_weights(
engine: Engine,
params_batch: list[tuple[str, torch.Tensor]],
device_mesh_key: str,
device_mesh: DeviceMesh,
load_format: Optional[str] = None,
):
"""
Update weights for the inference engine.
This function is designed to be stateless, so that the caller process could keep the stateful engine.
Example Use Case:
- Multiple Producer Process will call this function in a SPMD style
Args:
engine: The inference engine created by the caller process.
params_batch: A list of (name, tensor) tuples. We batched the tensors to avoid the overhead of cpu call.
device_mesh_key: The key of the device mesh. Typically "tp" or "infer_tp"
device_mesh: The device mesh.
load_format: The format of the weights.
"""
infer_tp_size = device_mesh[device_mesh_key].mesh.size()[0]
infer_tp_rank = device_mesh[device_mesh_key].get_local_rank()
from sglang.srt.patch_torch import monkey_patch_torch_reductions
monkey_patch_torch_reductions()
# [
# (name0, ipc_tensor0_tp0),
# (name1, ipc_tensor1_tp0),
# ]
named_tensors_batch = [
(
name,
MultiprocessingSerializer.serialize(
_preprocess_tensor_for_update_weights(tensor)
),
)
for name, tensor in params_batch
]
if infer_tp_rank == 0:
gathered_serialized_batches = [None for _ in range(infer_tp_size)]
else:
gathered_serialized_batches = None
# [
# [ (name0, ipc_tensor0_tp0), (name1, ipc_tensor1_tp0) ],
# [ (name0, ipc_tensor0_tp1), (name1, ipc_tensor1_tp1) ],
# ]
dist.gather_object(
obj=named_tensors_batch,
object_gather_list=gathered_serialized_batches,
dst=device_mesh[device_mesh_key].mesh.tolist()[0],
group=device_mesh[device_mesh_key].get_group(),
)
if infer_tp_rank == 0:
# Use zip(*) to "transpose" the data structure.
# After transpose, the data structure is like:
# [
# ( (name0, ipc_tensor0_tp0), (name0, ipc_tensor0_tp1) ),
# ( (name1, ipc_tensor1_tp0), (name1, ipc_tensor1_tp1) ),
# ]
logical_tensors = zip(*gathered_serialized_batches, strict=True)
named_tensors = [
# [
# (name0, LocalSerializedTensor(values=[ipc_tensor0_tp0, ipc_tensor0_tp1])),
# (name1, LocalSerializedTensor(values=[ipc_tensor1_tp0, ipc_tensor1_tp1])),
# ]
(
tensor_group[0][0],
LocalSerializedTensor(
values=[rank_part[1] for rank_part in tensor_group]
),
)
for tensor_group in logical_tensors
]
update_weights_request = UpdateWeightsFromTensorReqInput(
serialized_named_tensors=[
MultiprocessingSerializer.serialize(named_tensors)
for _ in range(infer_tp_size)
],
load_format=load_format,
)
return await engine.update_weights_from_tensor(update_weights_request)
def _preprocess_tensor_for_update_weights(tensor: torch.Tensor):
"""
Preprocess the tensor for update weights.
Example Use Case:
- FSDP: we gather tensor by calling full_tensor in _preprocess_tensor_for_update_weights
- Megatron: we do nothing here, assuming it is gathered when feed into this func
Args:
tensor: The tensor to be preprocessed.
Returns:
The full tensor if it is a DTensor, otherwise the original tensor.
"""
if isinstance(tensor, DTensor):
return tensor.full_tensor()
return tensor
......@@ -101,6 +101,7 @@ suites = {
TestFile("test_triton_sliding_window.py", 250),
TestFile("test_update_weights_from_disk.py", 114),
TestFile("test_update_weights_from_tensor.py", 48),
TestFile("test_utils_update_weights.py", 48),
TestFile("test_vertex_endpoint.py", 31),
TestFile("test_vision_chunked_prefill.py", 175),
TestFile("test_vlm_input_format.py", 300),
......
import asyncio
import os
import pytest
import torch
import torch.distributed as dist
from loguru import logger
from torch.distributed.device_mesh import init_device_mesh
from transformers import AutoModelForCausalLM
from sglang.srt.entrypoints.engine import Engine
from sglang.srt.weight_sync.utils import update_weights
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST
class AsyncEngine(Engine):
def __init__(self, **kwargs):
super().__init__(**kwargs)
async def update_weights_from_tensor(self, update_weights_request):
return await self.tokenizer_manager.update_weights_from_tensor(
update_weights_request, None
)
def is_distributed_available():
"""Check if distributed training environment is available"""
required_vars = ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT"]
return all(var in os.environ for var in required_vars)
def setup_single_process_distributed():
"""Setup distributed environment for single process testing"""
if not is_distributed_available():
os.environ["RANK"] = "0"
os.environ["WORLD_SIZE"] = "1"
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12356"
os.environ["LOCAL_RANK"] = "0"
class TestUtilsUpdateWeights:
"""Test class for utils.update_weights function"""
@pytest.fixture(scope="class")
def setup_distributed(self):
"""Setup distributed environment for testing"""
setup_single_process_distributed()
if not dist.is_initialized():
try:
dist.init_process_group(
backend="nccl" if torch.cuda.is_available() else "gloo"
)
except Exception as e:
pytest.skip(f"Could not initialize distributed backend: {e}")
rank = dist.get_rank()
world_size = dist.get_world_size()
if torch.cuda.is_available():
torch.cuda.set_device(rank % torch.cuda.device_count())
# Set up environment variables
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
os.environ["NCCL_CUMEM_ENABLE"] = "0"
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
os.environ["CUDA_DEVICE_MAX_CONNECTIONS"] = "4"
os.environ["CUDA_MODULE_LOADING"] = "AUTO"
yield rank, world_size
# Cleanup
if dist.is_initialized():
dist.destroy_process_group()
@pytest.fixture(scope="class")
def test_engine(self, setup_distributed):
"""Setup test engine"""
rank, world_size = setup_distributed
if rank == 0:
os.environ["SGLANG_BLOCK_NONZERO_RANK_CHILDREN"] = "0"
engine = AsyncEngine(
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
dtype="bfloat16",
mem_fraction_static=0.3,
enable_memory_saver=True,
tp_size=world_size,
disable_cuda_graph=True,
)
yield engine
engine.shutdown()
else:
yield None
@pytest.fixture(scope="class")
def test_model(self):
"""Load test model"""
try:
model = AutoModelForCausalLM.from_pretrained(
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
device_map="cpu",
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=(
torch.float16 if torch.cuda.is_available() else torch.float32
),
)
return model
except Exception as e:
pytest.skip(f"Could not load test model: {e}")
@pytest.fixture(scope="class")
def device_mesh(self, setup_distributed):
"""Create device mesh for testing"""
rank, world_size = setup_distributed
if not torch.cuda.is_available():
pytest.skip("CUDA not available for device mesh")
device_mesh_key = "tp"
mesh = init_device_mesh(
"cuda", (world_size,), mesh_dim_names=(device_mesh_key,)
)
return device_mesh_key, mesh
def create_test_params_batch(self, model, num_params=64):
"""Create a batch of test parameters from the model"""
param_names = []
test_tensors = []
# Get first few parameters from the model for testing
for i, (name, tensor) in enumerate(model.named_parameters()):
if i >= num_params:
break
param_names.append(name)
# Create test tensor with known values, matching original shape and dtype
test_tensor = torch.full_like(tensor, 1.5, dtype=tensor.dtype).cuda()
test_tensors.append(test_tensor)
return list(zip(param_names, test_tensors))
@pytest.mark.asyncio
async def test_utils_update_weights(
self, setup_distributed, test_engine, test_model, device_mesh
):
"""Test basic functionality of utils.update_weights"""
rank, world_size = setup_distributed
device_mesh_key, mesh = device_mesh
# Create test parameters batch
params_batch = self.create_test_params_batch(test_model, num_params=2)
print(
f"Rank {rank} testing utils.update_weights with {len(params_batch)} parameters"
)
# Test the utils.update_weights function
result = await update_weights(
engine=test_engine,
params_batch=params_batch,
device_mesh_key=device_mesh_key,
device_mesh=mesh,
load_format=None,
)
assert "Success" in result
if __name__ == "__main__":
pytest.main([__file__])
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment