"vscode:/vscode.git/clone" did not exist on "86a14cbad46f6f026ffcee7f504ffaca8da33929"
Unverified Commit cc0485be authored by Ke Bao's avatar Ke Bao Committed by GitHub
Browse files

Support w8a8 int8 quantization config (#2881)

parent b8cd09f2
......@@ -223,7 +223,11 @@ class ModelConfig:
"compressed_tensors",
"compressed-tensors",
"experts_int8",
"w8a8_int8",
]
compatible_quantization_methods = {
"w8a8_int8": ["compressed-tensors", "compressed_tensors"]
}
if self.quantization is not None:
self.quantization = self.quantization.lower()
......@@ -247,12 +251,17 @@ class ModelConfig:
if self.quantization is None:
self.quantization = quant_method
elif self.quantization != quant_method:
raise ValueError(
"Quantization method specified in the model config "
f"({quant_method}) does not match the quantization "
f"method specified in the `quantization` argument "
f"({self.quantization})."
)
if (
self.quantization not in compatible_quantization_methods
or quant_method
not in compatible_quantization_methods[self.quantization]
):
raise ValueError(
"Quantization method specified in the model config "
f"({quant_method}) does not match the quantization "
f"method specified in the `quantization` argument "
f"({self.quantization})."
)
if self.quantization is not None:
if self.quantization not in supported_quantization:
......
......@@ -23,6 +23,7 @@ from vllm.model_executor.layers.quantization.tpu_int8 import Int8TpuConfig
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.quantization.fp8 import Fp8Config
from sglang.srt.layers.quantization.modelopt_quant import ModelOptFp8Config
from sglang.srt.layers.quantization.w8a8_int8 import W8A8Int8Config
QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
"aqlm": AQLMConfig,
......@@ -42,6 +43,7 @@ QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
"bitsandbytes": BitsAndBytesConfig,
"qqq": QQQConfig,
"experts_int8": ExpertsInt8Config,
"w8a8_int8": W8A8Int8Config,
}
......
from typing import Any, Dict, List, Optional
import torch
from sglang.srt.utils import is_cuda_available
is_cuda = is_cuda_available()
if is_cuda:
from sgl_kernel import int8_scaled_mm
from torch.nn.parameter import Parameter
from sglang.srt.layers.linear import LinearMethodBase
from sglang.srt.layers.parameter import ChannelQuantScaleParameter, ModelWeightParameter
from sglang.srt.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from sglang.srt.layers.quantization.int8_kernel import per_token_quant_int8
class W8A8Int8Config(QuantizationConfig):
"""Config class for W8A8 Int8 Quantization.
- Weight: static, per-channel, symmetric
- Activation: dynamic, per-token, symmetric
"""
def __init__(self):
pass
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.float16, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 75
@classmethod
def get_name(self) -> str:
return "w8a8_int8"
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "W8A8Int8Config":
return cls()
def get_quant_method(
self,
layer: torch.nn.Module,
prefix: str,
) -> Optional["QuantizeMethodBase"]:
from vllm.model_executor.layers.linear import LinearBase
if isinstance(layer, LinearBase):
return W8A8Int8LinearMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
class W8A8Int8LinearMethod(LinearMethodBase):
def __init__(self, quantization_config: W8A8Int8Config):
self.quantization_config = quantization_config
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
layer.weight = Parameter(layer.weight.t(), requires_grad=False)
layer.weight_scale = Parameter(layer.weight_scale.data, requires_grad=False)
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs
):
weight_loader = extra_weight_attrs.get("weight_loader")
self.logical_widths = output_partition_sizes
weight = ModelWeightParameter(
data=torch.empty(
sum(output_partition_sizes), input_size_per_partition, dtype=torch.int8
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight", weight)
weight_scale = ChannelQuantScaleParameter(
data=torch.empty((sum(output_partition_sizes), 1), dtype=torch.float32),
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight_scale", weight_scale)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
):
x_q, x_scale = per_token_quant_int8(x)
return int8_scaled_mm(
x_q, layer.weight, x_scale, layer.weight_scale, out_dtype=x.dtype, bias=bias
)
......@@ -378,6 +378,7 @@ class ServerArgs:
"bitsandbytes",
"gguf",
"modelopt",
"w8a8_int8",
],
help="The quantization method.",
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment