Unverified Commit cb736df8 authored by Praneth Paruchuri's avatar Praneth Paruchuri Committed by GitHub
Browse files

Support for Phi-1.5 & Phi-2 models (#7862)

parent e2ed9d04
...@@ -30,7 +30,7 @@ in the GitHub search bar. ...@@ -30,7 +30,7 @@ in the GitHub search bar.
| **Llama** (2, 3.x, 4 series) | `meta-llama/Llama-4-Scout-17B-16E-Instruct` | Meta’s open LLM series, spanning 7B to 400B parameters (Llama 2, 3, and new Llama 4) with well-recognized performance. [SGLang provides Llama-4 model-specific optimizations](https://docs.sglang.ai/references/llama4) | | **Llama** (2, 3.x, 4 series) | `meta-llama/Llama-4-Scout-17B-16E-Instruct` | Meta’s open LLM series, spanning 7B to 400B parameters (Llama 2, 3, and new Llama 4) with well-recognized performance. [SGLang provides Llama-4 model-specific optimizations](https://docs.sglang.ai/references/llama4) |
| **Mistral** (Mixtral, NeMo, Small3) | `mistralai/Mistral-7B-Instruct-v0.2` | Open 7B LLM by Mistral AI with strong performance; extended into MoE (“Mixtral”) and NeMo Megatron variants for larger scale. | | **Mistral** (Mixtral, NeMo, Small3) | `mistralai/Mistral-7B-Instruct-v0.2` | Open 7B LLM by Mistral AI with strong performance; extended into MoE (“Mixtral”) and NeMo Megatron variants for larger scale. |
| **Gemma** (v1, v2, v3) | `google/gemma-3-1b-it` | Google’s family of efficient multilingual models (1B–27B); Gemma 3 offers a 128K context window, and its larger (4B+) variants support vision input. | | **Gemma** (v1, v2, v3) | `google/gemma-3-1b-it` | Google’s family of efficient multilingual models (1B–27B); Gemma 3 offers a 128K context window, and its larger (4B+) variants support vision input. |
| **Phi** (Phi-3, Phi-4, Phi-MoE series) | `microsoft/Phi-4-multimodal-instruct`, `microsoft/Phi-3.5-MoE-instruct` | Microsoft’s Phi family of small models (1.3B–5.6B); Phi-4-mini is a high-accuracy text model, Phi-3.5-MoE is a mixture-of-experts model, and Phi-4-multimodal (5.6B) processes text, images, and speech. | | **Phi** (Phi-1.5, Phi-2, Phi-3, Phi-4, Phi-MoE series) | `microsoft/Phi-4-multimodal-instruct`, `microsoft/Phi-3.5-MoE-instruct` | Microsoft’s Phi family of small models (1.3B–5.6B); Phi-4-multimodal (5.6B) processes text, images, and speech, Phi-4-mini is a high-accuracy text model and Phi-3.5-MoE is a mixture-of-experts model. |
| **MiniCPM** (v3, 4B) | `openbmb/MiniCPM3-4B` | OpenBMB’s series of compact LLMs for edge devices; MiniCPM 3 (4B) achieves GPT-3.5-level results in text tasks. | | **MiniCPM** (v3, 4B) | `openbmb/MiniCPM3-4B` | OpenBMB’s series of compact LLMs for edge devices; MiniCPM 3 (4B) achieves GPT-3.5-level results in text tasks. |
| **OLMoE** (Open MoE) | `allenai/OLMoE-1B-7B-0924` | Allen AI’s open Mixture-of-Experts model (7B total, 1B active parameters) delivering state-of-the-art results with sparse expert activation. | | **OLMoE** (Open MoE) | `allenai/OLMoE-1B-7B-0924` | Allen AI’s open Mixture-of-Experts model (7B total, 1B active parameters) delivering state-of-the-art results with sparse expert activation. |
| **StableLM** (3B, 7B) | `stabilityai/stablelm-tuned-alpha-7b` | StabilityAI’s early open-source LLM (3B & 7B) for general text generation; a demonstration model with basic instruction-following ability. | | **StableLM** (3B, 7B) | `stabilityai/stablelm-tuned-alpha-7b` | StabilityAI’s early open-source LLM (3B & 7B) for general text generation; a demonstration model with basic instruction-following ability. |
......
...@@ -164,6 +164,7 @@ class ScaledActivation(nn.Module): ...@@ -164,6 +164,7 @@ class ScaledActivation(nn.Module):
_ACTIVATION_REGISTRY = { _ACTIVATION_REGISTRY = {
"gelu": nn.GELU(), "gelu": nn.GELU(),
"gelu_pytorch_tanh": nn.GELU(approximate="tanh"), "gelu_pytorch_tanh": nn.GELU(approximate="tanh"),
"gelu_new": NewGELU(),
} }
......
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/phi.py
from typing import Iterable, Optional, Union
import torch
from torch import nn
from transformers import PhiConfig
from sglang.srt.distributed import get_pp_group, get_tensor_model_parallel_world_size
from sglang.srt.layers.activation import get_act_fn
from sglang.srt.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix, make_layers
class PhiAttention(nn.Module):
def __init__(
self,
config: PhiConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
layer_id: int = 0,
):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_size,
self.total_num_heads,
bias=True,
quant_config=quant_config,
)
self.dense = RowParallelLinear(
self.hidden_size,
self.hidden_size,
quant_config=quant_config,
)
scaling = self.head_size**-0.5
rotary_dim = int(
config.partial_rotary_factor
* (config.hidden_size // config.num_attention_heads)
)
assert rotary_dim % 2 == 0
rope_theta = getattr(config, "rope_theta", 10000.0)
max_position_embeddings = getattr(config, "max_position_embeddings", 2048)
self.rotary_emb = get_rope(
self.head_size,
rotary_dim=rotary_dim,
max_position=max_position_embeddings,
base=rope_theta,
)
self.attn = RadixAttention(
self.num_heads,
self.head_size,
scaling,
num_kv_heads=self.num_heads,
layer_id=layer_id,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
def forward(
self,
position_ids: torch.Tensor,
forward_batch: ForwardBatch,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
attn_output = self.attn(q, k, v, forward_batch=forward_batch)
output, _ = self.dense(attn_output)
return output
class PhiMLP(nn.Module):
def __init__(
self, config: PhiConfig, quant_config: Optional[QuantizationConfig] = None
):
super().__init__()
n_inner = getattr(config, "n_inner", None)
n_inner = n_inner if n_inner is not None else 4 * config.hidden_size
self.fc1 = ColumnParallelLinear(
config.hidden_size,
n_inner,
quant_config=quant_config,
)
self.fc2 = RowParallelLinear(
n_inner,
config.hidden_size,
quant_config=quant_config,
)
self.act = get_act_fn(config.hidden_act)
def forward(self, hidden_states):
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class PhiLayer(nn.Module):
def __init__(
self,
config: PhiConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
idx: int = 0,
):
super().__init__()
self.input_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
self.self_attn = PhiAttention(
config,
quant_config,
prefix=add_prefix("self_attn", prefix),
layer_id=idx,
)
self.mlp = PhiMLP(config, quant_config)
def forward(
self,
position_ids: torch.Tensor,
forward_batch: ForwardBatch,
hidden_states: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attn_outputs = self.self_attn(
position_ids=position_ids,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states
class PhiModel(nn.Module):
def __init__(
self,
config: PhiConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
pp_group = get_pp_group()
pp_size = pp_group.world_size
pp_rank = pp_group.rank
self.start_layer = pp_rank * config.num_hidden_layers // pp_size
self.end_layer = (pp_rank + 1) * config.num_hidden_layers // pp_size
self.layers = make_layers(
config.num_hidden_layers,
lambda idx, prefix: PhiLayer(
config, quant_config=quant_config, prefix=prefix, idx=idx
),
prefix=add_prefix("layers", prefix),
)
self.final_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
forward_batch: ForwardBatch,
positions: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states = layer(
position_ids=positions,
forward_batch=forward_batch,
hidden_states=hidden_states,
)
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
class PhiForCausalLM(nn.Module):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
]
}
def __init__(
self,
config: PhiConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = PhiModel(
config=config,
quant_config=quant_config,
prefix=add_prefix("model", prefix),
)
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
bias=True,
quant_config=quant_config,
)
self.logits_processor = LogitsProcessor(config)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
inputs_embeds: Optional[torch.Tensor] = None,
) -> LogitsProcessorOutput:
hidden_states = self.model(
input_ids=input_ids,
forward_batch=forward_batch,
positions=positions,
inputs_embeds=inputs_embeds,
)
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
weights = dict(weights)
loaded_keys = set()
for name, param in params_dict.items():
if name in loaded_keys:
continue
# Handle packed weights
is_packed = False
for packed_name, src_names in self.packed_modules_mapping.items():
if packed_name not in name:
continue
weight_loader = getattr(param, "weight_loader", default_weight_loader)
for src_name in src_names:
full_src_name = name.replace(packed_name, src_name)
if full_src_name in weights:
loaded_weight = weights[full_src_name]
# The shard_id for QKVParallelLinear is 'q', 'k', 'v'.
shard_id = src_name.split("_")[0]
weight_loader(param, loaded_weight, shard_id)
loaded_keys.add(full_src_name)
loaded_keys.add(name)
is_packed = True
break
if is_packed:
continue
# Handle non-packed weights
if name not in weights:
# Redundant with the check in the loop, but good for safety
continue
loaded_weight = weights[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_keys.add(name)
EntryClass = PhiForCausalLM
...@@ -65,6 +65,7 @@ ALL_MODELS = [ ...@@ -65,6 +65,7 @@ ALL_MODELS = [
"THUDM/glm-4-9b-chat", tp_size=2, trust_remote_code=True, skip_long_prompt=True "THUDM/glm-4-9b-chat", tp_size=2, trust_remote_code=True, skip_long_prompt=True
), ),
ModelCase("openai-community/gpt2"), ModelCase("openai-community/gpt2"),
ModelCase("microsoft/phi-1_5", trust_remote_code=True),
ModelCase("microsoft/Phi-3-small-8k-instruct", trust_remote_code=True), ModelCase("microsoft/Phi-3-small-8k-instruct", trust_remote_code=True),
ModelCase("allenai/OLMo-2-1124-7B-Instruct", skip_long_prompt=True), ModelCase("allenai/OLMo-2-1124-7B-Instruct", skip_long_prompt=True),
ModelCase("ibm-granite/granite-3.0-2b-instruct", skip_long_prompt=True), ModelCase("ibm-granite/granite-3.0-2b-instruct", skip_long_prompt=True),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment