Unverified Commit c7973222 authored by Mick's avatar Mick Committed by GitHub
Browse files

fix: fix apply_shuffle_mul_sum (#7444)

parent ef8a29c4
......@@ -2,9 +2,11 @@
#include <cudaTypedefs.h>
#include <torch/all.h>
#include <flashinfer/vec_dtypes.cuh>
#include <iostream>
#include "cutlass/array.h"
#include "utils.h"
constexpr uint64_t THREADS_PER_EXPERT = 512;
......@@ -255,37 +257,67 @@ void shuffle_rows(const torch::Tensor& input_tensor, const torch::Tensor& dst2sr
template <typename scalar_t>
__global__ void apply_shuffle_mul_sum_kernel(
const scalar_t* __restrict__ input_tensor, // [m * topk, row_stride]
scalar_t* __restrict__ output_tensor, // [m, row_stride]
const int32_t* __restrict__ permutation, // [m * topk]
const scalar_t* __restrict__ input_tensor, // [m * topk, k] (expert-major layout)
scalar_t* __restrict__ output_tensor, // [m, k] (token-major layout)
const int32_t* __restrict__ permutation, // [m * topk] (c_map: token-major-idx -> expert-major-idx)
int m,
int topk,
int row_stride,
const scalar_t* __restrict__ factors) // [m * topk] or nullptr
const scalar_t* __restrict__ factors) // [m * topk] (topk_weights, token-major layout)
{
int i = blockIdx.x; // [0, m * topk)
int d = threadIdx.x; // [0, row_stride)
if (i >= m || d >= row_stride) return;
scalar_t sum_val = 0.0;
for (int j = 0; j < topk; ++j) {
int index_2d = i * topk + j;
int src_row = permutation[index_2d];
if (src_row >= m) continue;
scalar_t val = input_tensor[src_row * row_stride + d];
int i = blockIdx.x;
if (i >= m) {
return;
}
scalar_t factor = 1.0;
if (factors != nullptr) {
factor = factors[index_2d];
constexpr uint32_t vec_size = 16 / sizeof(scalar_t);
using t = float;
using vec_t = flashinfer::vec_t<t, vec_size>;
int thread_idx = threadIdx.x;
int stride = blockDim.x;
for (int d_vec_idx = thread_idx; d_vec_idx < row_stride / vec_size; d_vec_idx += stride) {
int d = d_vec_idx * vec_size;
vec_t sum_vec;
sum_vec.fill(0.0f);
for (int j = 0; j < topk; ++j) {
int token_major_idx = i * topk + j;
int src_row = permutation[token_major_idx];
vec_t val_vec;
val_vec.cast_load(input_tensor + src_row * row_stride + d);
t factor = 1.0;
if (factors != nullptr) {
factor = factors[token_major_idx];
}
#pragma unroll
for (int k = 0; k < vec_size; ++k) {
sum_vec[k] += factor * val_vec[k];
}
}
sum_val += factor * val;
sum_vec.cast_store(output_tensor + i * row_stride + d);
}
output_tensor[i * row_stride + d] = sum_val;
// remainder part
int remainder_start = (row_stride / vec_size) * vec_size;
for (int d = remainder_start + thread_idx; d < row_stride; d += stride) {
t sum_val = 0.0;
for (int j = 0; j < topk; ++j) {
int token_major_idx = i * topk + j;
int src_row = permutation[token_major_idx];
t val = input_tensor[src_row * row_stride + d];
t factor = 1.0;
if (factors != nullptr) {
factor = factors[token_major_idx];
}
sum_val += factor * val;
}
output_tensor[i * row_stride + d] = sum_val;
}
}
void get_apply_shuffle_mul_sum_caller(
......@@ -304,7 +336,11 @@ void get_apply_shuffle_mul_sum_caller(
TORCH_CHECK(permutation.size(0) == m * topk, "permutation size must match m * topk");
dim3 block(std::min(256, row_stride));
auto scalar_type = output_tensor.scalar_type();
uint32_t vec_size = 16 / sizeof(scalar_type);
auto blockDim = std::min(row_stride / vec_size, 1024U);
dim3 block(blockDim);
dim3 grid(m); // blockIdx.x = j, blockIdx.y = i
auto stream = at::cuda::getCurrentCUDAStream(input_tensor.device().index());
......@@ -317,29 +353,17 @@ void get_apply_shuffle_mul_sum_caller(
factors_ptr = factors_opt->data_ptr();
}
if (output_tensor.scalar_type() == at::ScalarType::Half) {
const at::Half* factor_data = static_cast<const at::Half*>(factors_ptr);
apply_shuffle_mul_sum_kernel<at::Half><<<grid, block, 0, stream>>>(
input_tensor.data_ptr<at::Half>(),
output_tensor.data_ptr<at::Half>(),
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(output_tensor.scalar_type(), scalar_t, [&] {
apply_shuffle_mul_sum_kernel<scalar_t><<<grid, block, 0, stream>>>(
static_cast<const scalar_t*>(input_tensor.data_ptr()),
static_cast<scalar_t*>(output_tensor.data_ptr()),
perm_ptr,
m,
topk,
row_stride,
static_cast<const at::Half*>(factors_ptr));
} else if (output_tensor.scalar_type() == at::ScalarType::BFloat16) {
const c10::BFloat16* factor_data = static_cast<const c10::BFloat16*>(factors_ptr);
apply_shuffle_mul_sum_kernel<c10::BFloat16><<<grid, block, 0, stream>>>(
input_tensor.data_ptr<c10::BFloat16>(),
output_tensor.data_ptr<c10::BFloat16>(),
perm_ptr,
m,
topk,
row_stride,
static_cast<const c10::BFloat16*>(factors_ptr));
} else {
TORCH_CHECK(false, "Unsupported output dtype for cast+mul kernel: ", output_tensor.scalar_type());
}
static_cast<const scalar_t*>(factors_ptr));
return true;
});
}
/**
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment