Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
c38b5fb4
"docs/vscode:/vscode.git/clone" did not exist on "f8b0326934bacb7a7d4eba68fb6eddebaa6ff751"
Unverified
Commit
c38b5fb4
authored
Jan 30, 2025
by
Yineng Zhang
Committed by
GitHub
Jan 30, 2025
Browse files
update 3rdparty and rms norm for sgl-kernel (#3213)
parent
20453cef
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
8 additions
and
113 deletions
+8
-113
sgl-kernel/3rdparty/cutlass
sgl-kernel/3rdparty/cutlass
+1
-1
sgl-kernel/3rdparty/flashinfer
sgl-kernel/3rdparty/flashinfer
+1
-1
sgl-kernel/pyproject.toml
sgl-kernel/pyproject.toml
+1
-1
sgl-kernel/src/sgl-kernel/csrc/fused_add_rms_norm_kernel.cu
sgl-kernel/src/sgl-kernel/csrc/fused_add_rms_norm_kernel.cu
+4
-109
sgl-kernel/version.py
sgl-kernel/version.py
+1
-1
No files found.
cutlass
@
bdd64179
Compare
b78588d1
...
bdd64179
Subproject commit b
78588d1630aa6643bf021613717bafb705df4ef
Subproject commit b
dd641790ad49353b40ada41330552a78d2f8b5a
flashinfer
@
e5a3befb
Compare
4f1f0898
...
e5a3befb
Subproject commit
4f1f08989c71f92df181e346548c2ca48ae6daf5
Subproject commit
e5a3befbe3e63025f0158bc96b218a9c5f402ac7
sgl-kernel/pyproject.toml
View file @
c38b5fb4
...
...
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name
=
"sgl-kernel"
version
=
"0.0.3"
version
=
"0.0.3
.post1
"
description
=
"Kernel Library for SGLang"
readme
=
"README.md"
requires-python
=
">=3.9"
...
...
sgl-kernel/src/sgl-kernel/csrc/fused_add_rms_norm_kernel.cu
View file @
c38b5fb4
// Adapted from https://github.com/flashinfer-ai/flashinfer/blob/v0.1.6/include/flashinfer/norm.cuh
// and https://github.com/flashinfer-ai/flashinfer/blob/v0.1.6/python/csrc/norm.cu
// TODO(zhyncs): tmp fix, v0.1.6 enables SGLang e2e to pass CIs unlike v0.2.0
#include <ATen/cuda/CUDAContext.h>
#include <flashinfer/math.cuh>
#include <flashinfer/utils.cuh>
#include <flashinfer/vec_dtypes.cuh>
#include <numeric>
#include <flashinfer/norm.cuh>
#include "utils.h"
using
namespace
flashinfer
;
template
<
uint32_t
VEC_SIZE
,
typename
T
>
__global__
void
FusedAddRMSNormKernel
(
T
*
__restrict__
input
,
T
*
__restrict__
residual
,
T
*
__restrict__
weight
,
const
uint32_t
d
,
float
eps
)
{
const
uint32_t
bx
=
blockIdx
.
x
;
const
uint32_t
tx
=
threadIdx
.
x
,
ty
=
threadIdx
.
y
;
constexpr
uint32_t
warp_size
=
32
;
const
uint32_t
num_warps
=
blockDim
.
y
;
const
uint32_t
thread_id
=
tx
+
ty
*
warp_size
;
const
uint32_t
num_threads
=
num_warps
*
warp_size
;
const
uint32_t
rounds
=
ceil_div
(
d
,
VEC_SIZE
*
num_threads
);
extern
__shared__
float
smem
[];
float
sum_sq
=
0.
f
;
for
(
uint32_t
i
=
0
;
i
<
rounds
;
i
++
)
{
vec_t
<
T
,
VEC_SIZE
>
input_vec
;
input_vec
.
fill
(
0.
f
);
vec_t
<
T
,
VEC_SIZE
>
residual_vec
;
residual_vec
.
fill
(
0.
f
);
if
((
i
*
num_threads
+
thread_id
)
*
VEC_SIZE
<
d
)
{
input_vec
.
load
(
input
+
bx
*
d
+
i
*
num_threads
*
VEC_SIZE
+
thread_id
*
VEC_SIZE
);
residual_vec
.
load
(
residual
+
bx
*
d
+
i
*
num_threads
*
VEC_SIZE
+
thread_id
*
VEC_SIZE
);
}
#pragma unroll
for
(
uint32_t
j
=
0
;
j
<
VEC_SIZE
;
j
++
)
{
float
x
=
float
(
input_vec
[
j
]);
x
+=
float
(
residual_vec
[
j
]);
sum_sq
+=
x
*
x
;
residual_vec
[
j
]
=
(
T
)
x
;
}
if
((
i
*
num_threads
+
thread_id
)
*
VEC_SIZE
<
d
)
{
residual_vec
.
store
(
residual
+
bx
*
d
+
i
*
num_threads
*
VEC_SIZE
+
thread_id
*
VEC_SIZE
);
}
}
// first, warp reduce sum
#pragma unroll
for
(
uint32_t
offset
=
warp_size
/
2
;
offset
>
0
;
offset
/=
2
)
{
sum_sq
+=
math
::
shfl_xor_sync
(
sum_sq
,
offset
);
}
smem
[
ty
]
=
sum_sq
;
__syncthreads
();
// then, cross warp reduce sum using only the first warp
if
(
ty
==
0
)
{
sum_sq
=
(
tx
<
num_warps
)
?
smem
[
tx
]
:
0.
f
;
#pragma unroll
for
(
uint32_t
offset
=
warp_size
/
2
;
offset
>
0
;
offset
/=
2
)
{
sum_sq
+=
math
::
shfl_xor_sync
(
sum_sq
,
offset
);
}
smem
[
0
]
=
sum_sq
;
}
__syncthreads
();
float
rms_rcp
=
math
::
rsqrt
(
smem
[
0
]
/
float
(
d
)
+
eps
);
for
(
uint32_t
i
=
0
;
i
<
rounds
;
i
++
)
{
vec_t
<
T
,
VEC_SIZE
>
input_vec
;
vec_t
<
T
,
VEC_SIZE
>
weight_vec
;
vec_t
<
T
,
VEC_SIZE
>
residual_vec
;
input_vec
.
fill
(
0.
f
);
weight_vec
.
fill
(
0.
f
);
residual_vec
.
fill
(
0.
f
);
if
((
i
*
num_threads
+
thread_id
)
*
VEC_SIZE
<
d
)
{
input_vec
.
load
(
input
+
bx
*
d
+
i
*
num_threads
*
VEC_SIZE
+
thread_id
*
VEC_SIZE
);
weight_vec
.
load
(
weight
+
i
*
num_threads
*
VEC_SIZE
+
thread_id
*
VEC_SIZE
);
residual_vec
.
load
(
residual
+
bx
*
d
+
i
*
num_threads
*
VEC_SIZE
+
thread_id
*
VEC_SIZE
);
}
#pragma unroll
for
(
uint32_t
j
=
0
;
j
<
VEC_SIZE
;
j
++
)
{
input_vec
[
j
]
=
float
(
residual_vec
[
j
])
*
rms_rcp
*
float
(
weight_vec
[
j
]);
}
if
((
i
*
num_threads
+
thread_id
)
*
VEC_SIZE
<
d
)
{
input_vec
.
store
(
input
+
bx
*
d
+
i
*
num_threads
*
VEC_SIZE
+
thread_id
*
VEC_SIZE
);
}
}
}
template
<
typename
T
>
cudaError_t
FusedAddRMSNorm
(
T
*
input
,
T
*
residual
,
T
*
weight
,
uint32_t
batch_size
,
uint32_t
d
,
float
eps
=
1e-5
,
cudaStream_t
stream
=
0
)
{
const
uint32_t
vec_size
=
std
::
gcd
(
16
/
sizeof
(
T
),
d
);
const
uint32_t
block_size
=
std
::
min
<
uint32_t
>
(
1024
,
d
/
vec_size
);
const
uint32_t
num_warps
=
ceil_div
(
block_size
,
32
);
dim3
nblks
(
batch_size
);
dim3
nthrs
(
32
,
num_warps
);
const
uint32_t
smem_size
=
num_warps
*
sizeof
(
float
);
void
*
args
[]
=
{
&
input
,
&
residual
,
&
weight
,
&
d
,
&
eps
};
DISPATCH_ALIGNED_VEC_SIZE
(
vec_size
,
VEC_SIZE
,
{
auto
kernel
=
FusedAddRMSNormKernel
<
VEC_SIZE
,
T
>
;
FLASHINFER_CUDA_CALL
(
cudaLaunchKernel
((
void
*
)
kernel
,
nblks
,
nthrs
,
args
,
smem_size
,
stream
));
});
return
cudaSuccess
;
}
void
sgl_fused_add_rmsnorm
(
torch
::
Tensor
input
,
torch
::
Tensor
residual
,
torch
::
Tensor
weight
,
double
eps
)
{
CHECK_INPUT
(
input
);
CHECK_INPUT
(
residual
);
...
...
@@ -130,9 +25,9 @@ void sgl_fused_add_rmsnorm(torch::Tensor input, torch::Tensor residual, torch::T
cudaStream_t
torch_current_stream
=
at
::
cuda
::
getCurrentCUDAStream
();
// support float16, bfloat16 and float32
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16
(
input
.
scalar_type
(),
c_type
,
[
&
]
{
cudaError_t
status
=
FusedAddRMSNorm
(
static_cast
<
c_type
*>
(
input
.
data_ptr
()),
static_cast
<
c_type
*>
(
residual
.
data_ptr
()),
static_cast
<
c_type
*>
(
weight
.
data_ptr
()),
batch_size
,
hidden_size
,
eps
,
torch_current_stream
);
cudaError_t
status
=
norm
::
FusedAddRMSNorm
(
static_cast
<
c_type
*>
(
input
.
data_ptr
()),
static_cast
<
c_type
*>
(
residual
.
data_ptr
()),
static_cast
<
c_type
*>
(
weight
.
data_ptr
()),
batch_size
,
hidden_size
,
eps
,
torch_current_stream
);
TORCH_CHECK
(
status
==
cudaSuccess
,
"FusedAddRMSNorm failed with error code "
+
std
::
string
(
cudaGetErrorString
(
status
)));
return
true
;
...
...
sgl-kernel/version.py
View file @
c38b5fb4
__version__
=
"0.0.3"
__version__
=
"0.0.3
.post1
"
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment