Unverified Commit c0982ac5 authored by Mingyi's avatar Mingyi Committed by GitHub
Browse files

Fix Llava model (#594)

parent dc1b8bcf
import json
from typing import Callable, List, Optional, Union
from typing import List, Optional
import numpy as np
import requests
from sglang.backend.base_backend import BaseBackend
from sglang.global_config import global_config
from sglang.lang.chat_template import get_chat_template_by_model_path
from sglang.lang.interpreter import StreamExecutor
from sglang.lang.ir import SglArgument, SglSamplingParams
from sglang.utils import encode_image_base64, find_printable_text, http_request
from sglang.lang.ir import SglSamplingParams
from sglang.utils import find_printable_text, http_request
class RuntimeEndpoint(BaseBackend):
......
......@@ -523,9 +523,9 @@ class StreamExecutor:
self, sampling_params=sampling_params
)
self.variables[name] = ""
self.stream_var_event[name].set()
self.variables[name] = ""
for comp, meta_info in generator:
self.text_ += comp
self.variables[name] += comp
......
......@@ -3,7 +3,7 @@
import warnings
from dataclasses import dataclass
from enum import IntEnum, auto
from typing import List
from typing import List, Union
import numpy as np
import torch
......@@ -31,7 +31,7 @@ class BaseFinishReason:
class FINISH_MATCHED_TOKEN(BaseFinishReason):
def __init__(self, matched: int | List[int]):
def __init__(self, matched: Union[int, List[int]]):
super().__init__()
self.matched = matched
......
......@@ -115,6 +115,12 @@ def get_hf_text_config(config: PretrainedConfig):
"""Get the "sub" config relevant to llm for multi modal models.
No op for pure text models.
"""
class_name = config.architectures[0]
if class_name.startswith("Llava") and class_name.endswith("ForCausalLM"):
# We support non-hf version of llava models, so we do not want to
# read the wrong values from the unused default text_config.
return config
if hasattr(config, "text_config"):
# The code operates under the assumption that text_config should have
# `num_attention_heads` (among others). Assert here to fail early
......
# Adapted from:
# https://github.com/vllm-project/vllm/blob/56b325e977435af744f8b3dca7af0ca209663558/vllm/model_executor/models/gemma2.py
from typing import Iterable, List, Optional, Set, Tuple, Union
from typing import Iterable, Optional, Set, Tuple, Union
import torch
from torch import nn
from transformers import Gemma2Config
from transformers import PretrainedConfig
from vllm.config import CacheConfig, LoRAConfig
from vllm.distributed import get_tensor_model_parallel_world_size
......@@ -131,7 +131,7 @@ class Gemma2Attention(nn.Module):
def __init__(
self,
layer_idx: int,
config: Gemma2Config,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
......@@ -222,7 +222,7 @@ class Gemma2DecoderLayer(nn.Module):
def __init__(
self,
layer_idx: int,
config: Gemma2Config,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
......@@ -290,7 +290,7 @@ class Gemma2Model(nn.Module):
def __init__(
self,
config: Gemma2Config,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
......@@ -369,7 +369,7 @@ class Gemma2ForCausalLM(nn.Module):
def __init__(
self,
config: Gemma2Config,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment