Unverified Commit c087ddd6 authored by Yuan Luo's avatar Yuan Luo Committed by GitHub
Browse files

Refine pre_reorder_triton_kernel slightly to improve performance (#6627)


Co-authored-by: default avatarluoyuan.luo <luoyuan.luo@antgroup.com>
parent f4a8987f
import argparse
import itertools
import pandas as pd
import torch
import triton
from sglang.srt.layers.moe.ep_moe.kernels import pre_reorder_triton_kernel
def benchmark_pre_reorder(batch_size, topk, model_config):
hidden_size = model_config["hidden_size"]
block_size = model_config["block_size"]
expert_range = model_config["expert_range"]
input_ptr = torch.randn(batch_size, hidden_size, dtype=torch.float16, device="cuda")
gateup_input_ptr = torch.zeros(
batch_size * topk, hidden_size, dtype=torch.float16, device="cuda"
)
src2dst_ptr = torch.randint(
0, batch_size * topk, (batch_size, topk), dtype=torch.int32, device="cuda"
)
topk_ids_ptr = torch.randint(
expert_range[0],
expert_range[1] + 1,
(batch_size, topk),
dtype=torch.int32,
device="cuda",
)
a1_scales_ptr = torch.rand(
expert_range[1] - expert_range[0] + 1, dtype=torch.float32, device="cuda"
)
input_ptr = input_ptr.view(-1)
gateup_input_ptr = gateup_input_ptr.view(-1)
src2dst_ptr = src2dst_ptr.view(-1)
topk_ids_ptr = topk_ids_ptr.view(-1)
def run_kernel():
pre_reorder_triton_kernel[(batch_size,)](
input_ptr,
gateup_input_ptr,
src2dst_ptr,
topk_ids_ptr,
a1_scales_ptr,
expert_range[0],
expert_range[1],
topk,
hidden_size,
block_size,
)
for _ in range(10):
run_kernel()
torch.cuda.synchronize()
ms, _, _ = triton.testing.do_bench(run_kernel, quantiles=[0.5, 0.2, 0.8])
return ms
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--hidden-size", type=int, required=True)
parser.add_argument("--block-size", type=int, default=512)
args = parser.parse_args()
model_config = {
"hidden_size": args.hidden_size,
"block_size": args.block_size,
"expert_range": (0, 255),
}
batch_sizes = [64, 128, 256, 512, 640, 768, 1024]
topks = [2, 4, 8]
configs = list(itertools.product(batch_sizes, topks))
# Prepare results dict: keys = topk, each row is indexed by batch_size
results_dict = {topk: {} for topk in topks}
for batch_size, topk in configs:
ms = benchmark_pre_reorder(batch_size, topk, model_config)
results_dict[topk][batch_size] = ms
# Build dataframe
df = pd.DataFrame(
{
"batch_size": batch_sizes,
**{
f"TopK={topk}": [results_dict[topk].get(bs, None) for bs in batch_sizes]
for topk in topks
},
}
)
print("\npre-reorder-performance:")
print(df.to_string(index=False, float_format="%.6f"))
if __name__ == "__main__":
main()
......@@ -184,8 +184,10 @@ def pre_reorder_triton_kernel(
src_idx = tl.program_id(0)
src2dst_ptr = src2dst_ptr + src_idx * topk
topk_ids_ptr = topk_ids_ptr + src_idx * topk
src_ptr = input_ptr + src_idx * hidden_size
vec = tl.arange(0, BLOCK_SIZE)
for idx in range(topk):
expert_id = tl.load(topk_ids_ptr + idx)
if expert_id >= start_expert_id and expert_id <= end_expert_id:
......@@ -197,7 +199,7 @@ def pre_reorder_triton_kernel(
dst_idx = tl.load(src2dst_ptr + idx)
dst_ptr = gateup_input_ptr + dst_idx * hidden_size
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
offset = start_offset + vec
mask = offset < hidden_size
in_data = tl.load(src_ptr + offset, mask=mask).to(tl.float32)
out_data = (in_data * scale).to(OutDtype)
......@@ -481,8 +483,11 @@ def post_reorder_triton_kernel(
computed = False
store_ptr = output_ptr + src_idx * hidden_size
vec = tl.arange(0, BLOCK_SIZE)
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
offset = start_offset + vec
mask = offset < hidden_size
sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
......@@ -499,7 +504,7 @@ def post_reorder_triton_kernel(
if computed == False:
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
offset = start_offset + tl.arange(0, BLOCK_SIZE)
offset = start_offset + vec
mask = offset < hidden_size
tl.store(
store_ptr + offset, tl.zeros([BLOCK_SIZE], dtype=InDtype), mask=mask
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment