Unverified Commit bdf946bf authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Support loading pre-sharded moe weights (#2716)

parent 8c8779cd
......@@ -321,9 +321,12 @@ class FusedMoE(torch.nn.Module):
# Index the loaded weight for tp sharding.
# gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
shard_size = expert_data.shape[shard_dim] // 2
loaded_weight = loaded_weight.narrow(
shard_dim, shard_size * tp_rank, shard_size
)
if not self.use_presharded_weights:
loaded_weight = loaded_weight.narrow(
shard_dim, shard_size * tp_rank, shard_size
)
# Narrow parameter and load.
# w1, gate_proj: Load into first logical weight of w13.
if shard_id == "w1":
......@@ -347,9 +350,12 @@ class FusedMoE(torch.nn.Module):
# down_proj: "RowParallel" so tp sharding on input_dim
# Narrow parameter and load.
shard_size = expert_data.shape[shard_dim]
loaded_weight = loaded_weight.narrow(
shard_dim, shard_size * tp_rank, shard_size
)
if not self.use_presharded_weights:
loaded_weight = loaded_weight.narrow(
shard_dim, shard_size * tp_rank, shard_size
)
# w2, down_proj: Load into only logical weight of w2.
expert_data.copy_(loaded_weight)
......@@ -389,7 +395,9 @@ class FusedMoE(torch.nn.Module):
weight_name: str,
shard_id: str,
expert_id: int,
use_presharded_weights: bool = False,
) -> None:
self.use_presharded_weights = use_presharded_weights
# compressed-tensors checkpoints with packed weights are stored flipped
# TODO (mgoin): check self.quant_method.quant_config.quant_format
......
......@@ -16,13 +16,16 @@
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/mixtral.py#L1
"""Inference-only Grok1 model."""
from typing import Iterable, Optional, Tuple
from typing import Iterable, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from transformers import PretrainedConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.layers.rotary_embedding import get_rope
from sglang.srt.layers.activation import GeluAndMul
......@@ -42,6 +45,7 @@ from sglang.srt.layers.vocab_parallel_embedding import (
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.loader import DefaultModelLoader
from sglang.srt.model_loader.weight_utils import default_weight_loader
......@@ -347,6 +351,16 @@ class Grok1ForCausalLM(nn.Module):
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
self.logits_processor = LogitsProcessor(config)
# Monkey patch _prepare_weights to load pre-sharded weights
if (
self.config.num_local_experts > 0
and get_tensor_model_parallel_world_size() > 1
):
self.use_presharded_weights = True
setattr(DefaultModelLoader, "_prepare_weights", _prepare_presharded_weights)
else:
self.use_presharded_weights = False
def forward(
self,
input_ids: torch.Tensor,
......@@ -359,7 +373,15 @@ class Grok1ForCausalLM(nn.Module):
input_ids, hidden_states, self.lm_head, forward_batch
)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
def load_weights(
self,
weights: Iterable[Tuple[str, torch.Tensor]],
use_presharded_weights: bool | None = None,
):
if use_presharded_weights is None:
use_presharded_weights = self.use_presharded_weights
num_experts = self.config.num_local_experts
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
......@@ -375,10 +397,23 @@ class Grok1ForCausalLM(nn.Module):
ckpt_gate_proj_name="w1",
ckpt_down_proj_name="w2",
ckpt_up_proj_name="w3",
num_experts=self.config.num_local_experts,
num_experts=num_experts,
)
params_dict = dict(self.named_parameters())
all_names = set(params_dict.keys())
hit_names = set()
def load_weight_wrapper(name, loaded_weight, *args, **kwargs):
if name not in params_dict:
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight, *args, **kwargs)
hit_names.add(name)
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
......@@ -391,9 +426,7 @@ class Grok1ForCausalLM(nn.Module):
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
load_weight_wrapper(name, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
......@@ -402,38 +435,76 @@ class Grok1ForCausalLM(nn.Module):
continue
name = name.replace(weight_name, param_name)
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
if use_presharded_weights:
extra_kwargs = {
"use_presharded_weights": use_presharded_weights
}
else:
extra_kwargs = {}
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
load_weight_wrapper(
name,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
**extra_kwargs,
)
break
else:
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
# Skip loading kv_scale from ckpts towards new design.
if name.endswith(".kv_scale") and name not in params_dict:
if name.endswith(".bias") and name not in params_dict:
continue
if name is None:
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
load_weight_wrapper(name=name, loaded_weight=loaded_weight)
old_prepare_weights = getattr(DefaultModelLoader, "_prepare_weights")
def _prepare_presharded_weights(
self, model_name_or_path: str, revision: Optional[str], fall_back_to_pt: bool
) -> Tuple[str, List[str], bool]:
import glob
import os
if get_tensor_model_parallel_world_size() == 1:
return old_prepare_weights(self, model_name_or_path, revision, fall_back_to_pt)
if not os.path.isdir(model_name_or_path):
from sglang.srt.model_loader.weight_utils import download_weights_from_hf
allow_patterns = ["*.safetensors", "*.bin"]
hf_folder = download_weights_from_hf(
model_name_or_path,
self.load_config.download_dir,
allow_patterns,
revision,
ignore_patterns=self.load_config.ignore_patterns,
)
else:
hf_folder = model_name_or_path
tp_rank = get_tensor_model_parallel_rank()
# The old format
allow_patterns = [f"*-{tp_rank:03d}.bin"]
# The new format
allow_patterns += [f"*-TP-{tp_rank:03d}.safetensors", "*-TP-common.safetensors"]
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
if hf_weights_files[0].endswith("safetensors"):
use_safetensors = True
else:
use_safetensors = False
return hf_folder, hf_weights_files, use_safetensors
class Grok1ModelForCausalLM(Grok1ForCausalLM):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment