Unverified Commit bdbe5f81 authored by Michał Moskal's avatar Michał Moskal Committed by GitHub
Browse files

update llguidance to 0.7.11; adds StructTag (#4870)

parent 9ad28f63
......@@ -24,7 +24,7 @@ runtime_common = [
"hf_transfer",
"huggingface_hub",
"interegular",
"llguidance>=0.6.15",
"llguidance>=0.7.11,<0.8.0",
"modelscope",
"ninja",
"orjson",
......
......@@ -14,49 +14,48 @@
"""Constrained decoding with llguidance backend."""
import json
import logging
import os
from typing import List, Optional, Tuple
import llguidance
import llguidance.hf
import llguidance.torch
import torch
from llguidance.gbnf_to_lark import any_to_lark
from llguidance import LLMatcher, LLTokenizer, StructTag, grammar_from
from llguidance.hf import from_tokenizer
from llguidance.torch import (
allocate_token_bitmask,
apply_token_bitmask_inplace,
fill_next_token_bitmask,
)
from sglang.srt.constrained.base_grammar_backend import (
BaseGrammarBackend,
BaseGrammarObject,
)
logger = logging.getLogger(__name__)
class GuidanceGrammar(BaseGrammarObject):
def __init__(
self, llguidance_tokenizer: llguidance.LLTokenizer, serialized_grammar: str
):
def __init__(self, llguidance_tokenizer: LLTokenizer, serialized_grammar: str):
super().__init__()
self.llguidance_tokenizer = llguidance_tokenizer
self.serialized_grammar = serialized_grammar
# TODO: add support for fast-forward tokens in the future
self.ll_interpreter = llguidance.LLInterpreter(
self.ll_matcher = LLMatcher(
self.llguidance_tokenizer,
self.serialized_grammar,
enable_backtrack=False,
enable_ff_tokens=False,
log_level=int(os.environ.get("LLGUIDANCE_LOG_LEVEL", "1")),
)
self.pending_ff_tokens: list[int] = []
self.finished = False
self.bitmask = None
def try_jump_forward(self, tokenizer) -> Optional[Tuple[List[int], str]]:
if len(self.pending_ff_tokens) > 0:
s = self.llguidance_tokenizer.decode_str(self.pending_ff_tokens)
ff_tokens = self.pending_ff_tokens
self.pending_ff_tokens = []
return (ff_tokens, s)
return None
ff_tokens = self.ll_matcher.compute_ff_tokens()
if ff_tokens:
return ff_tokens, ""
else:
return None
def jump_forward_str_state(self, helper: Tuple[List[int], str]) -> Tuple[str, int]:
return "", -1
......@@ -67,32 +66,22 @@ class GuidanceGrammar(BaseGrammarObject):
pass
def accept_token(self, token: int):
backtrack, ff_tokens = self.ll_interpreter.commit_token(token)
if len(ff_tokens) > 0 and backtrack == 0:
# first token is last generated token
ff_tokens = ff_tokens[1:]
self.pending_ff_tokens.extend(ff_tokens)
if not self.ll_matcher.consume_token(token):
logger.warning(f"matcher error: {self.ll_matcher.get_error()}")
self.finished = True
def fill_vocab_mask(self, vocab_mask: torch.Tensor, idx: int) -> None:
if len(self.pending_ff_tokens) > 0:
# if we have pending fast-forward tokens,
# just return them immediately
ff_token = self.pending_ff_tokens.pop(0)
vocab_mask[idx, :] = 0
vocab_mask[idx, ff_token // 32] = 1 << (ff_token % 32)
return
if self.ll_interpreter.has_pending_stop():
if self.ll_matcher.is_stopped():
self.finished = True
llguidance.torch.fill_next_token_bitmask(self.ll_interpreter, vocab_mask, idx)
fill_next_token_bitmask(self.ll_matcher, vocab_mask, idx)
def allocate_vocab_mask(
self, vocab_size: int, batch_size: int, device
) -> torch.Tensor:
if self.bitmask is None or self.bitmask.shape[0] < batch_size:
# only create bitmask when batch gets larger
self.bitmask = llguidance.torch.allocate_token_bitmask(
self.bitmask = allocate_token_bitmask(
batch_size, self.llguidance_tokenizer.vocab_size
)
bitmask = self.bitmask
......@@ -107,7 +96,7 @@ class GuidanceGrammar(BaseGrammarObject):
@staticmethod
def apply_vocab_mask(logits: torch.Tensor, vocab_mask: torch.Tensor) -> None:
llguidance.torch.apply_token_bitmask_inplace(logits, vocab_mask)
apply_token_bitmask_inplace(logits, vocab_mask)
def copy(self):
return GuidanceGrammar(
......@@ -117,36 +106,64 @@ class GuidanceGrammar(BaseGrammarObject):
class GuidanceBackend(BaseGrammarBackend):
def __init__(self, tokenizer, whitespace_pattern: Optional[str] = None):
def __init__(
self,
tokenizer,
whitespace_pattern: Optional[str] = None,
n_vocab: Optional[int] = None,
):
super().__init__()
self.tokenizer = tokenizer
self.whitespace_flexible = (
True if whitespace_pattern == "whitespace_flexible" else False
)
self.llguidance_tokenizer = llguidance.hf.from_tokenizer(self.tokenizer, None)
def _from_serialized(self, serialized_grammar) -> GuidanceGrammar:
return GuidanceGrammar(
llguidance_tokenizer=self.llguidance_tokenizer,
serialized_grammar=serialized_grammar,
self.whitespace_pattern = whitespace_pattern
self.llguidance_tokenizer = from_tokenizer(self.tokenizer, n_vocab)
def _from_serialized(self, serialized_grammar) -> Optional[GuidanceGrammar]:
try:
return GuidanceGrammar(
llguidance_tokenizer=self.llguidance_tokenizer,
serialized_grammar=serialized_grammar,
)
except Exception as e:
logger.warning(f"Skip invalid grammar: {serialized_grammar}, {e=}")
return None
def dispatch_json(self, key_string: str) -> Optional[GuidanceGrammar]:
serialized_grammar = LLMatcher.grammar_from_json_schema(
key_string,
defaults={
"whitespace_pattern": self.whitespace_pattern,
},
)
def dispatch_json(self, key_string: str) -> GuidanceGrammar:
json_schema = key_string
compiler = llguidance.JsonCompiler(whitespace_flexible=self.whitespace_flexible)
serialized_grammar = compiler.compile(json_schema)
return self._from_serialized(serialized_grammar)
def dispatch_regex(self, key_string: str) -> GuidanceGrammar:
compiler = llguidance.RegexCompiler()
serialized_grammar = compiler.compile(regex=key_string)
return self._from_serialized(serialized_grammar)
def dispatch_ebnf(self, key_string: str) -> GuidanceGrammar:
compiler = llguidance.LarkCompiler()
serialized_grammar = compiler.compile(any_to_lark(key_string))
def dispatch_regex(self, key_string: str) -> Optional[GuidanceGrammar]:
serialized_grammar = grammar_from("regex", key_string)
return self._from_serialized(serialized_grammar)
def dispatch_structural_tag(self, key_string: str):
return super().dispatch_structural_tag(key_string)
def dispatch_ebnf(self, key_string: str) -> Optional[GuidanceGrammar]:
try:
serialized_grammar = grammar_from("ebnf", key_string)
return self._from_serialized(serialized_grammar)
except ValueError as e:
logger.warning(f"Skip invalid ebnf: regex={key_string}, {e=}")
return None
def dispatch_structural_tag(self, key_string: str) -> Optional[GuidanceGrammar]:
try:
structural_tag = json.loads(key_string)
tags = [
StructTag(
begin=structure["begin"],
grammar=structure["schema"],
end=structure["end"],
trigger=structural_tag["triggers"][0], # TODO?
)
for structure in structural_tag["structures"]
]
g = StructTag.to_grammar(tags)
return self._from_serialized(g)
except Exception as e:
logging.warning(f"Skip invalid structural_tag: {key_string}, {e=}")
return None
......@@ -238,5 +238,11 @@ class TestEBNFConstrained(CustomTestCase):
)
class TestEBNFConstrainedLLGuidance(TestEBNFConstrained):
@classmethod
def setUpClass(cls):
setup_class(cls, "llguidance", disable_overlap=False)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment