Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
bb418ced
"docs/source/guide_cn/data-process.rst" did not exist on "9c08cd6bf055eea253cd91d1e3765576004fd9a7"
Unverified
Commit
bb418ced
authored
Feb 11, 2025
by
Xiaoyu Zhang
Committed by
GitHub
Feb 11, 2025
Browse files
optimize per token group quant fp8 (#3490)
parent
fdf04a14
Changes
8
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
509 additions
and
0 deletions
+509
-0
sgl-kernel/benchmark/bench_per_token_group_quant_fp8.py
sgl-kernel/benchmark/bench_per_token_group_quant_fp8.py
+209
-0
sgl-kernel/setup.py
sgl-kernel/setup.py
+1
-0
sgl-kernel/src/sgl-kernel/__init__.py
sgl-kernel/src/sgl-kernel/__init__.py
+2
-0
sgl-kernel/src/sgl-kernel/csrc/per_token_group_quant_fp8.cu
sgl-kernel/src/sgl-kernel/csrc/per_token_group_quant_fp8.cu
+100
-0
sgl-kernel/src/sgl-kernel/include/sgl_kernels_ops.h
sgl-kernel/src/sgl-kernel/include/sgl_kernels_ops.h
+4
-0
sgl-kernel/src/sgl-kernel/ops/__init__.py
sgl-kernel/src/sgl-kernel/ops/__init__.py
+14
-0
sgl-kernel/src/sgl-kernel/torch_extension.cc
sgl-kernel/src/sgl-kernel/torch_extension.cc
+6
-0
sgl-kernel/tests/test_per_token_group_quant_fp8.py
sgl-kernel/tests/test_per_token_group_quant_fp8.py
+173
-0
No files found.
sgl-kernel/benchmark/bench_per_token_group_quant_fp8.py
0 → 100644
View file @
bb418ced
import
itertools
import
math
from
typing
import
Any
,
Dict
,
List
,
Optional
,
Tuple
import
torch
import
triton
import
triton.language
as
tl
from
sgl_kernel
import
sgl_per_token_group_quant_fp8
from
sglang.srt.utils
import
get_device_core_count
,
get_device_name
,
is_hip
is_hip_
=
is_hip
()
fp8_type_
=
torch
.
float8_e4m3fnuz
if
is_hip_
else
torch
.
float8_e4m3fn
@
triton
.
jit
def
_per_token_group_quant_fp8
(
# Pointers to inputs and output
y_ptr
,
y_q_ptr
,
y_s_ptr
,
# Stride of input
y_stride
,
# Collums of input
N
,
# Avoid to divide zero
eps
,
# Information for float8
fp8_min
,
fp8_max
,
# Meta-parameters
BLOCK
:
tl
.
constexpr
,
):
"""A Triton-accelerated function to perform per-token-group quantization on a
tensor.
This function converts the tensor values into float8 values.
"""
# Map the program id to the row of X and Y it should compute.
g_id
=
tl
.
program_id
(
0
)
y_ptr
+=
g_id
*
y_stride
y_q_ptr
+=
g_id
*
y_stride
y_s_ptr
+=
g_id
cols
=
tl
.
arange
(
0
,
BLOCK
)
# N <= BLOCK
mask
=
cols
<
N
y
=
tl
.
load
(
y_ptr
+
cols
,
mask
=
mask
,
other
=
0.0
).
to
(
tl
.
float32
)
# Quant
_absmax
=
tl
.
maximum
(
tl
.
max
(
tl
.
abs
(
y
)),
eps
)
y_s
=
_absmax
/
fp8_max
y_q
=
tl
.
clamp
(
y
/
y_s
,
fp8_min
,
fp8_max
).
to
(
y_q_ptr
.
dtype
.
element_ty
)
tl
.
store
(
y_q_ptr
+
cols
,
y_q
,
mask
=
mask
)
tl
.
store
(
y_s_ptr
,
y_s
)
def
triton_per_token_group_quant_fp8
(
x
:
torch
.
Tensor
,
group_size
:
int
,
eps
:
float
=
1e-10
,
dtype
:
torch
.
dtype
=
fp8_type_
,
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
"""Function to perform per-token-group quantization on an input tensor `x`.
It converts the tensor values into signed float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Args:
x: The input tenosr with ndim >= 2.
group_size: The group size used for quantization.
eps: The minimum to avoid dividing zero.
dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn` is supported for now.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization.
"""
assert
(
x
.
shape
[
-
1
]
%
group_size
==
0
),
"the last dimension of `x` cannot be divisible by `group_size`"
assert
x
.
is_contiguous
(),
"`x` is not contiguous"
finfo
=
torch
.
finfo
(
dtype
)
fp8_max
=
finfo
.
max
fp8_min
=
-
fp8_max
x_q
=
torch
.
empty_like
(
x
,
device
=
x
.
device
,
dtype
=
dtype
)
M
=
x
.
numel
()
//
group_size
N
=
group_size
x_s
=
torch
.
empty
(
x
.
shape
[:
-
1
]
+
(
x
.
shape
[
-
1
]
//
group_size
,),
device
=
x
.
device
,
dtype
=
torch
.
float32
,
)
BLOCK
=
triton
.
next_power_of_2
(
N
)
# heuristics for number of warps
num_warps
=
min
(
max
(
BLOCK
//
256
,
1
),
8
)
num_stages
=
1
_per_token_group_quant_fp8
[(
M
,)](
x
,
x_q
,
x_s
,
group_size
,
N
,
eps
,
fp8_min
=
fp8_min
,
fp8_max
=
fp8_max
,
BLOCK
=
BLOCK
,
num_warps
=
num_warps
,
num_stages
=
num_stages
,
)
return
x_q
,
x_s
def
sglang_per_token_group_quant_fp8
(
x
:
torch
.
Tensor
,
group_size
:
int
,
eps
:
float
=
1e-10
,
dtype
:
torch
.
dtype
=
fp8_type_
,
):
assert
(
x
.
shape
[
-
1
]
%
group_size
==
0
),
"the last dimension of `x` cannot be divisible by `group_size`"
assert
x
.
is_contiguous
(),
"`x` is not contiguous"
finfo
=
torch
.
finfo
(
dtype
)
fp8_max
=
finfo
.
max
fp8_min
=
-
fp8_max
x_q
=
torch
.
empty_like
(
x
,
device
=
x
.
device
,
dtype
=
dtype
)
M
=
x
.
numel
()
//
group_size
N
=
group_size
x_s
=
torch
.
empty
(
x
.
shape
[:
-
1
]
+
(
x
.
shape
[
-
1
]
//
group_size
,),
device
=
x
.
device
,
dtype
=
torch
.
float32
,
)
sgl_per_token_group_quant_fp8
(
x
,
x_q
,
x_s
,
group_size
,
eps
,
fp8_min
,
fp8_max
)
return
x_q
,
x_s
def
calculate_diff
(
batch_size
,
seq_len
,
group_size
):
dtype
=
torch
.
float16
device
=
torch
.
device
(
"cuda"
)
hidden_dim
=
group_size
*
2
x
=
torch
.
randn
(
batch_size
,
seq_len
,
hidden_dim
,
device
=
device
,
dtype
=
dtype
)
x_q_triton
,
x_s_triton
=
triton_per_token_group_quant_fp8
(
x
.
clone
(),
group_size
)
x_q_sglang
,
x_s_sglang
=
sglang_per_token_group_quant_fp8
(
x
.
clone
(),
group_size
)
if
torch
.
allclose
(
x_q_triton
.
to
(
torch
.
float32
),
x_q_sglang
.
to
(
torch
.
float32
),
rtol
=
1e-3
,
atol
=
1e-5
)
and
torch
.
allclose
(
x_s_triton
,
x_s_sglang
,
rtol
=
1e-3
,
atol
=
1e-5
):
print
(
"✅ All implementations match"
)
else
:
print
(
"❌ Implementations differ"
)
batch_size_range
=
[
1
,
2
,
4
,
8
,
16
,
32
,
64
]
seq_len_range
=
[
64
,
128
,
256
,
512
,
1024
,
2048
]
group_size_range
=
[
128
]
# For DeepSeek V3/R1
configs
=
list
(
itertools
.
product
(
batch_size_range
,
seq_len_range
,
group_size_range
))
@
triton
.
testing
.
perf_report
(
triton
.
testing
.
Benchmark
(
x_names
=
[
"batch_size"
,
"seq_len"
,
"group_size"
],
x_vals
=
configs
,
line_arg
=
"provider"
,
line_vals
=
[
"triton"
,
"sglang"
],
line_names
=
[
"Triton"
,
"SGL Kernel"
],
styles
=
[(
"blue"
,
"-"
),
(
"green"
,
"-"
)],
ylabel
=
"us"
,
plot_name
=
"per-token-group-quant-fp8-performance"
,
args
=
{},
)
)
def
benchmark
(
batch_size
,
seq_len
,
group_size
,
provider
):
dtype
=
torch
.
bfloat16
device
=
torch
.
device
(
"cuda"
)
hidden_dim
=
group_size
*
2
x
=
torch
.
randn
(
batch_size
,
seq_len
,
hidden_dim
,
device
=
device
,
dtype
=
dtype
)
quantiles
=
[
0.5
,
0.2
,
0.8
]
if
provider
==
"triton"
:
fn
=
lambda
:
triton_per_token_group_quant_fp8
(
x
.
clone
(),
group_size
)
elif
provider
==
"sglang"
:
fn
=
lambda
:
sglang_per_token_group_quant_fp8
(
x
.
clone
(),
group_size
)
ms
,
min_ms
,
max_ms
=
triton
.
testing
.
do_bench
(
fn
,
quantiles
=
quantiles
)
return
1000
*
ms
,
1000
*
max_ms
,
1000
*
min_ms
if
__name__
==
"__main__"
:
calculate_diff
(
batch_size
=
4
,
seq_len
=
128
,
group_size
=
64
)
benchmark
.
run
(
print_data
=
True
)
sgl-kernel/setup.py
View file @
bb418ced
...
@@ -100,6 +100,7 @@ sources = [
...
@@ -100,6 +100,7 @@ sources = [
"src/sgl-kernel/csrc/fused_add_rms_norm_kernel.cu"
,
"src/sgl-kernel/csrc/fused_add_rms_norm_kernel.cu"
,
"src/sgl-kernel/csrc/eagle_utils.cu"
,
"src/sgl-kernel/csrc/eagle_utils.cu"
,
"src/sgl-kernel/csrc/speculative_sampling.cu"
,
"src/sgl-kernel/csrc/speculative_sampling.cu"
,
"src/sgl-kernel/csrc/per_token_group_quant_fp8.cu"
,
"3rdparty/flashinfer/csrc/activation.cu"
,
"3rdparty/flashinfer/csrc/activation.cu"
,
"3rdparty/flashinfer/csrc/bmm_fp8.cu"
,
"3rdparty/flashinfer/csrc/bmm_fp8.cu"
,
"3rdparty/flashinfer/csrc/norm.cu"
,
"3rdparty/flashinfer/csrc/norm.cu"
,
...
...
sgl-kernel/src/sgl-kernel/__init__.py
View file @
bb418ced
...
@@ -29,6 +29,7 @@ from sgl_kernel.ops import (
...
@@ -29,6 +29,7 @@ from sgl_kernel.ops import (
register_graph_buffers
,
register_graph_buffers
,
rmsnorm
,
rmsnorm
,
sampling_scaling_penalties
,
sampling_scaling_penalties
,
sgl_per_token_group_quant_fp8
,
silu_and_mul
,
silu_and_mul
,
top_k_renorm_prob
,
top_k_renorm_prob
,
top_k_top_p_sampling_from_probs
,
top_k_top_p_sampling_from_probs
,
...
@@ -65,4 +66,5 @@ __all__ = [
...
@@ -65,4 +66,5 @@ __all__ = [
"tree_speculative_sampling_target_only"
,
"tree_speculative_sampling_target_only"
,
"build_tree_kernel_efficient"
,
"build_tree_kernel_efficient"
,
"build_tree_kernel"
,
"build_tree_kernel"
,
"sgl_per_token_group_quant_fp8"
,
]
]
sgl-kernel/src/sgl-kernel/csrc/per_token_group_quant_fp8.cu
0 → 100644
View file @
bb418ced
#include <ATen/cuda/CUDAContext.h>
#include <c10/util/Float8_e4m3fn.h>
#include <cmath>
#include "utils.h"
using
FP8_TYPE
=
c10
::
Float8_e4m3fn
;
__device__
__forceinline__
float
WarpReduce
(
volatile
float
*
smem
,
const
int
tid
)
{
if
(
tid
<
8
)
{
smem
[
tid
]
=
fmaxf
(
smem
[
tid
],
smem
[
tid
+
8
]);
if
(
tid
<
4
)
smem
[
tid
]
=
fmaxf
(
smem
[
tid
],
smem
[
tid
+
4
]);
if
(
tid
<
2
)
smem
[
tid
]
=
fmaxf
(
smem
[
tid
],
smem
[
tid
+
2
]);
if
(
tid
<
1
)
smem
[
tid
]
=
fmaxf
(
smem
[
tid
],
smem
[
tid
+
1
]);
}
return
smem
[
0
];
}
template
<
typename
T
>
__global__
void
per_token_group_quant_fp8_kernel
(
const
T
*
__restrict__
input
,
void
*
__restrict__
output_q
,
float
*
__restrict__
output_s
,
const
int
group_size
,
const
int
num_groups
,
const
float
eps
,
const
float
fp8_min
,
const
float
fp8_max
)
{
const
int
groups_per_block
=
16
;
const
int
block_group_id
=
blockIdx
.
x
*
groups_per_block
;
const
int
tid
=
threadIdx
.
x
;
const
int
local_group_id
=
tid
/
16
;
// Each 16 threads handle one group
const
int
local_tid
=
tid
%
16
;
// Thread ID within the group
__shared__
float
s_absmax
[
16
][
17
];
// Use 17 instead of 16 to avoid bank conflicts
// Local maximum value for each thread
float
local_absmax
=
eps
;
// Ensure this block doesn't process out-of-bounds groups
if
(
block_group_id
+
local_group_id
<
num_groups
)
{
// Calculate input/output pointers for current group
const
T
*
group_input
=
input
+
(
block_group_id
+
local_group_id
)
*
group_size
;
FP8_TYPE
*
group_output
=
static_cast
<
FP8_TYPE
*>
(
output_q
)
+
(
block_group_id
+
local_group_id
)
*
group_size
;
float
*
scale_output
=
output_s
+
block_group_id
+
local_group_id
;
// Calculate local maximum absolute value
for
(
int
i
=
local_tid
;
i
<
group_size
;
i
+=
16
)
{
float
val
=
static_cast
<
float
>
(
group_input
[
i
]);
float
abs_val
=
fabsf
(
val
);
local_absmax
=
fmaxf
(
local_absmax
,
abs_val
);
}
// Store in shared memory
s_absmax
[
local_group_id
][
local_tid
]
=
local_absmax
;
__syncthreads
();
// Perform reduction within each group
if
(
local_tid
<
8
)
{
WarpReduce
(
&
s_absmax
[
local_group_id
][
0
],
local_tid
);
}
__syncthreads
();
// Get the maximum value for this group
const
float
group_absmax
=
s_absmax
[
local_group_id
][
0
];
const
float
y_s
=
group_absmax
/
fp8_max
;
// Only the first thread in each group writes the scale
if
(
local_tid
==
0
)
{
*
scale_output
=
y_s
;
}
// Quantize the data
for
(
int
i
=
local_tid
;
i
<
group_size
;
i
+=
16
)
{
float
val
=
static_cast
<
float
>
(
group_input
[
i
]);
float
q_val
=
fminf
(
fmaxf
(
val
/
y_s
,
fp8_min
),
fp8_max
);
group_output
[
i
]
=
FP8_TYPE
(
q_val
);
}
}
}
void
sgl_per_token_group_quant_fp8
(
torch
::
Tensor
input
,
torch
::
Tensor
output_q
,
torch
::
Tensor
output_s
,
int64_t
group_size
,
double
eps
,
double
fp8_min
,
double
fp8_max
)
{
CHECK_INPUT
(
input
);
CHECK_INPUT
(
output_q
);
CHECK_INPUT
(
output_s
);
const
int
num_groups
=
input
.
numel
()
/
group_size
;
CHECK_EQ
(
input
.
numel
()
%
group_size
,
0
);
// Each block processes 16 groups, adjust grid size accordingly
dim3
grid
((
num_groups
+
15
)
/
16
);
dim3
block
(
256
);
// Keep 256 threads, each 16 threads handle one group
cudaStream_t
stream
=
at
::
cuda
::
getCurrentCUDAStream
();
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16
(
input
.
scalar_type
(),
scalar_t
,
[
&
]
{
per_token_group_quant_fp8_kernel
<
scalar_t
><<<
grid
,
block
,
0
,
stream
>>>
(
static_cast
<
scalar_t
*>
(
input
.
data_ptr
()),
output_q
.
data_ptr
(),
static_cast
<
float
*>
(
output_s
.
data_ptr
()),
group_size
,
num_groups
,
(
float
)
eps
,
(
float
)
fp8_min
,
(
float
)
fp8_max
);
return
true
;
});
}
sgl-kernel/src/sgl-kernel/include/sgl_kernels_ops.h
View file @
bb418ced
...
@@ -143,3 +143,7 @@ void build_tree_kernel_efficient(at::Tensor parent_list, at::Tensor selected_ind
...
@@ -143,3 +143,7 @@ void build_tree_kernel_efficient(at::Tensor parent_list, at::Tensor selected_ind
void
build_tree_kernel
(
at
::
Tensor
parent_list
,
at
::
Tensor
selected_index
,
at
::
Tensor
verified_seq_len
,
void
build_tree_kernel
(
at
::
Tensor
parent_list
,
at
::
Tensor
selected_index
,
at
::
Tensor
verified_seq_len
,
at
::
Tensor
tree_mask
,
at
::
Tensor
positions
,
at
::
Tensor
retrive_index
,
int64_t
topk
,
at
::
Tensor
tree_mask
,
at
::
Tensor
positions
,
at
::
Tensor
retrive_index
,
int64_t
topk
,
int64_t
depth
,
int64_t
draft_token_num
);
int64_t
depth
,
int64_t
draft_token_num
);
// sgl_per_token_group_quant_fp8
void
sgl_per_token_group_quant_fp8
(
at
::
Tensor
input
,
at
::
Tensor
output_q
,
at
::
Tensor
output_s
,
int64_t
group_size
,
double
eps
,
double
fp8_min
,
double
fp8_max
);
sgl-kernel/src/sgl-kernel/ops/__init__.py
View file @
bb418ced
...
@@ -579,3 +579,17 @@ def build_tree_kernel(
...
@@ -579,3 +579,17 @@ def build_tree_kernel(
depth
,
depth
,
draft_token_num
,
draft_token_num
,
)
)
def
sgl_per_token_group_quant_fp8
(
input
:
torch
.
Tensor
,
output_q
:
torch
.
Tensor
,
output_s
:
torch
.
Tensor
,
group_size
:
int
,
eps
:
float
,
fp8_min
:
float
,
fp8_max
:
float
,
)
->
None
:
torch
.
ops
.
sgl_kernels
.
sgl_per_token_group_quant_fp8
(
input
,
output_q
,
output_s
,
group_size
,
eps
,
fp8_min
,
fp8_max
)
sgl-kernel/src/sgl-kernel/torch_extension.cc
View file @
bb418ced
...
@@ -153,6 +153,12 @@ TORCH_LIBRARY_EXPAND(sgl_kernels, m) {
...
@@ -153,6 +153,12 @@ TORCH_LIBRARY_EXPAND(sgl_kernels, m) {
"Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, "
"Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, "
"int topk, int depth, int draft_token_num) -> ()"
);
"int topk, int depth, int draft_token_num) -> ()"
);
m
.
impl
(
"build_tree_kernel"
,
torch
::
kCUDA
,
&
build_tree_kernel
);
m
.
impl
(
"build_tree_kernel"
,
torch
::
kCUDA
,
&
build_tree_kernel
);
// per_token_group_quant_fp8
m
.
def
(
"sgl_per_token_group_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
" float eps, float fp8_min, float fp8_max) -> ()"
);
m
.
impl
(
"sgl_per_token_group_quant_fp8"
,
torch
::
kCUDA
,
&
sgl_per_token_group_quant_fp8
);
}
}
REGISTER_EXTENSION
(
_kernels
)
REGISTER_EXTENSION
(
_kernels
)
sgl-kernel/tests/test_per_token_group_quant_fp8.py
0 → 100644
View file @
bb418ced
import
itertools
from
typing
import
Any
,
Dict
,
List
,
Optional
,
Tuple
import
pytest
import
torch
import
triton
import
triton.language
as
tl
from
sgl_kernel
import
sgl_per_token_group_quant_fp8
from
sglang.srt.utils
import
get_device_core_count
,
get_device_name
,
is_hip
is_hip_
=
is_hip
()
fp8_type_
=
torch
.
float8_e4m3fnuz
if
is_hip_
else
torch
.
float8_e4m3fn
@
triton
.
jit
def
_per_token_group_quant_fp8
(
# Pointers to inputs and output
y_ptr
,
y_q_ptr
,
y_s_ptr
,
# Stride of input
y_stride
,
# Collums of input
N
,
# Avoid to divide zero
eps
,
# Information for float8
fp8_min
,
fp8_max
,
# Meta-parameters
BLOCK
:
tl
.
constexpr
,
):
"""A Triton-accelerated function to perform per-token-group quantization on a
tensor.
This function converts the tensor values into float8 values.
"""
# Map the program id to the row of X and Y it should compute.
g_id
=
tl
.
program_id
(
0
)
y_ptr
+=
g_id
*
y_stride
y_q_ptr
+=
g_id
*
y_stride
y_s_ptr
+=
g_id
cols
=
tl
.
arange
(
0
,
BLOCK
)
# N <= BLOCK
mask
=
cols
<
N
y
=
tl
.
load
(
y_ptr
+
cols
,
mask
=
mask
,
other
=
0.0
).
to
(
tl
.
float32
)
# Quant
_absmax
=
tl
.
maximum
(
tl
.
max
(
tl
.
abs
(
y
)),
eps
)
y_s
=
_absmax
/
fp8_max
y_q
=
tl
.
clamp
(
y
/
y_s
,
fp8_min
,
fp8_max
).
to
(
y_q_ptr
.
dtype
.
element_ty
)
tl
.
store
(
y_q_ptr
+
cols
,
y_q
,
mask
=
mask
)
tl
.
store
(
y_s_ptr
,
y_s
)
def
triton_per_token_group_quant_fp8
(
x
:
torch
.
Tensor
,
group_size
:
int
,
eps
:
float
=
1e-10
,
dtype
:
torch
.
dtype
=
fp8_type_
,
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
"""Function to perform per-token-group quantization on an input tensor `x`.
It converts the tensor values into signed float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Args:
x: The input tenosr with ndim >= 2.
group_size: The group size used for quantization.
eps: The minimum to avoid dividing zero.
dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn` is supported for now.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization.
"""
assert
(
x
.
shape
[
-
1
]
%
group_size
==
0
),
"the last dimension of `x` cannot be divisible by `group_size`"
assert
x
.
is_contiguous
(),
"`x` is not contiguous"
finfo
=
torch
.
finfo
(
dtype
)
fp8_max
=
finfo
.
max
fp8_min
=
-
fp8_max
x_q
=
torch
.
empty_like
(
x
,
device
=
x
.
device
,
dtype
=
dtype
)
M
=
x
.
numel
()
//
group_size
N
=
group_size
x_s
=
torch
.
empty
(
x
.
shape
[:
-
1
]
+
(
x
.
shape
[
-
1
]
//
group_size
,),
device
=
x
.
device
,
dtype
=
torch
.
float32
,
)
BLOCK
=
triton
.
next_power_of_2
(
N
)
# heuristics for number of warps
num_warps
=
min
(
max
(
BLOCK
//
256
,
1
),
8
)
num_stages
=
1
_per_token_group_quant_fp8
[(
M
,)](
x
,
x_q
,
x_s
,
group_size
,
N
,
eps
,
fp8_min
=
fp8_min
,
fp8_max
=
fp8_max
,
BLOCK
=
BLOCK
,
num_warps
=
num_warps
,
num_stages
=
num_stages
,
)
return
x_q
,
x_s
def
sglang_per_token_group_quant_fp8
(
x
:
torch
.
Tensor
,
group_size
:
int
,
eps
:
float
=
1e-10
,
dtype
:
torch
.
dtype
=
fp8_type_
,
):
assert
(
x
.
shape
[
-
1
]
%
group_size
==
0
),
"the last dimension of `x` cannot be divisible by `group_size`"
assert
x
.
is_contiguous
(),
"`x` is not contiguous"
finfo
=
torch
.
finfo
(
dtype
)
fp8_max
=
finfo
.
max
fp8_min
=
-
fp8_max
x_q
=
torch
.
empty_like
(
x
,
device
=
x
.
device
,
dtype
=
dtype
)
M
=
x
.
numel
()
//
group_size
N
=
group_size
x_s
=
torch
.
empty
(
x
.
shape
[:
-
1
]
+
(
x
.
shape
[
-
1
]
//
group_size
,),
device
=
x
.
device
,
dtype
=
torch
.
float32
,
)
sgl_per_token_group_quant_fp8
(
x
,
x_q
,
x_s
,
group_size
,
eps
,
fp8_min
,
fp8_max
)
return
x_q
,
x_s
@
pytest
.
mark
.
parametrize
(
"batch_size, seq_len, group_size"
,
list
(
itertools
.
product
(
[
1
,
2
,
4
,
8
,
16
],
# batch_size
[
64
,
128
,
256
,
512
,
1024
,
2048
],
# seq_len
[
64
,
128
,
256
],
# group_size
)
),
)
def
test_per_token_group_quant_compare_implementations
(
batch_size
,
seq_len
,
group_size
):
x
=
torch
.
randn
(
(
batch_size
,
seq_len
,
group_size
*
2
),
device
=
"cuda"
,
dtype
=
torch
.
float16
)
x_q_triton
,
x_s_triton
=
triton_per_token_group_quant_fp8
(
x
,
group_size
)
x_q_sglang
,
x_s_sglang
=
sglang_per_token_group_quant_fp8
(
x
,
group_size
)
assert
torch
.
allclose
(
x_q_triton
.
to
(
torch
.
float32
),
x_q_sglang
.
to
(
torch
.
float32
),
rtol
=
1e-3
,
atol
=
1e-5
)
assert
torch
.
allclose
(
x_s_triton
,
x_s_sglang
,
rtol
=
1e-3
,
atol
=
1e-5
)
if
__name__
==
"__main__"
:
pytest
.
main
([
__file__
])
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment