"docs/vscode:/vscode.git/clone" did not exist on "11e49de410ec84ec669293a91dfaa13a53c9bc47"
Unverified Commit bb185b0e authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Update README.md (#7040)

parent 4f723edd
......@@ -12,7 +12,7 @@
--------------------------------------------------------------------------------
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/)
| [**Blog**](https://lmsys.org/blog/2025-05-05-large-scale-ep/)
| [**Documentation**](https://docs.sglang.ai/)
| [**Join Slack**](https://slack.sglang.ai/)
| [**Join Bi-Weekly Development Meeting**](https://meeting.sglang.ai/)
......@@ -44,7 +44,7 @@ SGLang is a fast serving framework for large language models and vision language
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
The core features include:
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, continuous batching, token attention (paged attention), speculative decoding, tensor parallelism, chunked prefill, structured outputs, quantization (FP8/INT4/AWQ/GPTQ), and multi-lora batching.
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, prefill-decode disaggregation, speculative decoding, continuous batching, paged attention, tensor parallelism, pipeline parallelism, expert parallelism, structured outputs, chunked prefill, quantization (FP8/INT4/AWQ/GPTQ), and multi-lora batching.
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, Qwen, DeepSeek, LLaVA, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models.
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
......@@ -63,7 +63,7 @@ Learn more in the release blogs: [v0.2 blog](https://lmsys.org/blog/2024-07-25-s
[Development Roadmap (2025 H1)](https://github.com/sgl-project/sglang/issues/4042)
## Adoption and Sponsorship
SGLang has been deployed at large scale, serving trillions of tokens in production every day. It is trusted and adopted by a broad range of leading enterprises and institutions, including xAI, NVIDIA, AMD, Google Cloud, Oracle Cloud, LinkedIn, Cursor, Voltage Park, Atlas Cloud, DataCrunch, Baseten, Nebius, Novita, InnoMatrix, RunPod, Stanford, UC Berkeley, UCLA, ETCHED, Jam & Tea Studios, Hyperbolic, as well as major technology organizations across North America and Asia. As an open-source LLM inference engine, SGLang has become the de facto standard in the industry, with production deployments running on over 100,000 GPUs worldwide.
SGLang has been deployed at large scale, generating trillions of tokens in production every day. It is trusted and adopted by a broad range of leading enterprises and institutions, including xAI, NVIDIA, AMD, Google Cloud, Oracle Cloud, LinkedIn, Cursor, Voltage Park, Atlas Cloud, DataCrunch, Baseten, Nebius, Novita, InnoMatrix, RunPod, Stanford, UC Berkeley, UCLA, ETCHED, Jam & Tea Studios, Hyperbolic, as well as major technology organizations across North America and Asia. As an open-source LLM inference engine, SGLang has become the de facto standard in the industry, with production deployments running on over 100,000 GPUs worldwide.
<img src="https://raw.githubusercontent.com/sgl-project/sgl-learning-materials/refs/heads/main/slides/adoption.png" alt="logo" width="800" margin="10px"></img>
......
......@@ -5,7 +5,7 @@ SGLang is a fast serving framework for large language models and vision language
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
The core features include:
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, continuous batching, token attention (paged attention), speculative decoding, tensor parallelism, chunked prefill, structured outputs, quantization (FP8/INT4/AWQ/GPTQ), and multi-lora batching.
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, zero-overhead CPU scheduler, prefill-decode disaggregation, speculative decoding, continuous batching, paged attention, tensor parallelism, pipeline parallelism, expert parallelism, structured outputs, chunked prefill, quantization (FP8/INT4/AWQ/GPTQ), and multi-lora batching.
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, Qwen, DeepSeek, LLaVA, etc.), embedding models (e5-mistral, gte, mcdse) and reward models (Skywork), with easy extensibility for integrating new models.
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment