"vscode:/vscode.git/clone" did not exist on "746f603b2030437c214b106a0aa7f90818b16cd8"
Unverified Commit ba069a24 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Fix grammar backend (#2018)

parent 125b1199
......@@ -13,30 +13,5 @@ See the License for the specific language governing permissions and
limitations under the License.
"""
import json
from typing import Dict, Optional, Union
from pydantic import BaseModel
try:
from outlines.fsm.json_schema import build_regex_from_object
except ImportError:
# Since outlines 0.0.32, build_regex_from_object is replaced by build_regex_from_schema,
# which only accepts string schema as input.
from outlines.fsm.json_schema import build_regex_from_schema
def build_regex_from_object(
object: Union[str, BaseModel, Dict], whitespace_pattern: Optional[str] = None
):
if isinstance(object, type(BaseModel)):
schema = json.dumps(object.model_json_schema())
elif isinstance(object, Dict):
schema = json.dumps(object)
else:
schema = object
return build_regex_from_schema(schema, whitespace_pattern)
__all__ = [
"build_regex_from_object",
]
# TODO(lmzheng): make this an optional dependency
from sglang.srt.constrained.outlines_backend import build_regex_from_object
......@@ -95,9 +95,7 @@ class BaseToolCache:
def get_cache_hit_rate(self):
with self.lock_metrics:
if self.metrics["total"] == 0:
return 0
return self.metrics["hit"] / self.metrics["total"]
return self.metrics["hit"] / max(self.metrics["total"], 1)
def get_avg_init_time(self):
with self.lock_metrics:
......
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
"""Cache for the compressed finite state machine."""
import logging
from concurrent.futures import Future, ThreadPoolExecutor
from typing import List, Tuple, Union
import torch
from sglang.srt.constrained.outlines_cache import OutlinesCache, RegexGuide
from sglang.srt.constrained.outlines_jump_forward import (
OutlinesJumpCache,
OutlinesJumpForwardMap,
)
from sglang.srt.constrained.xgrammar_cache import (
GrammarMatcher,
XGrammarBackend,
XGrammarJumpCache,
)
logger = logging.getLogger(__name__)
class JumpHelper:
def __init__(
self, data: Union[List, str] = "", state: int = -1, suffix_ids=[]
) -> None:
self.data: Union[List, str] = data
self.state: int = state
self.suffix_ids: List[int] = suffix_ids
def can_jump(self):
return len(self.data) > 0
class Grammar:
def __init__(
self,
grammar: Union[GrammarMatcher, Tuple[RegexGuide, int]],
jump_map: Union[XGrammarJumpCache, OutlinesJumpForwardMap, None],
) -> None:
self.grammar = grammar
self.jump_map = jump_map
def accept_token(self, token: int):
if isinstance(self.grammar, GrammarMatcher):
assert self.grammar.accept_token(token)
else:
guide, state = self.grammar
self.grammar = guide, guide.get_next_state(state, token)
def try_jump(self, tokenizer) -> JumpHelper:
if isinstance(self.jump_map, XGrammarJumpCache):
assert isinstance(self.grammar, GrammarMatcher)
return JumpHelper(self.grammar.find_jump_forward_string())
elif isinstance(self.jump_map, OutlinesJumpForwardMap):
assert isinstance(self.grammar, Tuple)
_, state = self.grammar
jump_forward_bytes = self.jump_map.jump_forward_byte(state)
if jump_forward_bytes is None or len(jump_forward_bytes) == 0:
return JumpHelper() # can't jump
# preprocess the jump forward string
suffix_bytes = []
continuation_range = range(0x80, 0xC0)
cur_state = state
while (
len(jump_forward_bytes)
and jump_forward_bytes[0][0] in continuation_range
):
# continuation bytes
byte_edge = jump_forward_bytes.pop(0)
suffix_bytes.append(byte_edge[0])
cur_state = byte_edge[1]
suffix_tokens = [f"<0x{hex(b)[2:].upper()}>" for b in suffix_bytes]
suffix_ids = tokenizer.convert_tokens_to_ids(suffix_tokens)
return JumpHelper(suffix_ids, cur_state, suffix_bytes)
else:
return JumpHelper() # can't jump
def jump_forward_str_state(self, helper: JumpHelper) -> Tuple[str, int]:
if isinstance(helper.data, str):
return helper.data, -1
else:
assert isinstance(self.jump_map, OutlinesJumpForwardMap)
return self.jump_map.jump_forward_symbol(helper.state)
def jump_and_retokenize(
self, old_output_ids: List[int], new_output_ids: List[int], next_state: int
):
if isinstance(self.grammar, GrammarMatcher):
k = 0
for i, old_id in enumerate(old_output_ids):
if old_id == new_output_ids[i]:
k = i + 1
else:
break
# rollback to the last token that is the same
if k < len(old_output_ids):
self.grammar.rollback(len(old_output_ids) - k)
for i in range(k, len(new_output_ids)):
assert self.grammar.accept_token(new_output_ids[i])
else:
self.grammar = self.grammar[0], next_state
def fill_vocab_mask(self, vocab_mask: torch.Tensor, vocab_size: int):
if isinstance(self.grammar, GrammarMatcher):
# Note that this bitmask is a bitset, not bool
bitmask = self.grammar.get_next_token_bitmask()
# Mask the tokens that are not allowed
vocab_mask[
self.grammar.get_rejected_tokens_from_bitmask(bitmask, vocab_size)
] = 1
else:
guide, state = self.grammar
vocab_mask.fill_(1)
vocab_mask[guide.get_next_instruction(state).tokens] = 0
class GrammarBackend:
def __init__(
self,
tokenizer_path,
tokenizer_args_dict,
skip_tokenizer_init=False,
whitespace_patterns=None,
backend=None,
allow_jump=False,
):
self.executor = ThreadPoolExecutor()
self.backend = backend
if backend == "xgrammar":
self.grammar_cache = XGrammarBackend(
tokenizer_path=tokenizer_path,
tokenizer_args_dict=tokenizer_args_dict,
skip_tokenizer_init=skip_tokenizer_init,
whitespace_patterns=whitespace_patterns,
)
self.jump_cache = XGrammarJumpCache() if allow_jump else None
else:
assert backend == "outlines"
self.grammar_cache = OutlinesCache(
tokenizer_path=tokenizer_path,
tokenizer_args_dict=tokenizer_args_dict,
skip_tokenizer_init=skip_tokenizer_init,
constrained_json_whitespace_pattern=whitespace_patterns,
)
self.jump_cache = OutlinesJumpCache() if allow_jump else None
def _query(self, key: Tuple[str, str], vocab_size: int) -> Grammar:
if isinstance(self.grammar_cache, XGrammarBackend):
return Grammar(self.grammar_cache.query(key, vocab_size), self.jump_cache)
else:
guide, regex = self.grammar_cache.query(key)
jump_map = self.jump_cache.query(regex)
return Grammar((guide, 0), jump_map)
def query(self, key: Tuple[str, str], vocab_size: int) -> Future:
return self.executor.submit(self._query, key, vocab_size)
def reset(self):
self.grammar_cache.reset()
self.jump_cache.reset()
......@@ -13,41 +13,139 @@ See the License for the specific language governing permissions and
limitations under the License.
"""
"""Cache for the compressed finite state machine."""
"""Constrained decoding with outlines backend."""
import json
import logging
from concurrent.futures import Future, ThreadPoolExecutor
from typing import Dict, List, Optional, Tuple, Union
import torch
from interegular import InvalidSyntax, parse_pattern
from outlines.fsm.guide import RegexGuide
from outlines.models.transformers import TransformerTokenizer
from transformers import AutoTokenizer
from pydantic import BaseModel
from sglang.srt.constrained import build_regex_from_object
from sglang.srt.constrained.base_tool_cache import BaseToolCache
from sglang.srt.constrained.outlines_jump_forward import (
OutlinesJumpForwardCache,
OutlinesJumpForwardMap,
)
logger = logging.getLogger(__name__)
class OutlinesCache(BaseToolCache):
try:
from outlines.fsm.json_schema import build_regex_from_object
except ImportError:
# Since outlines 0.0.32, build_regex_from_object is replaced by build_regex_from_schema,
# which only accepts string schema as input.
from outlines.fsm.json_schema import build_regex_from_schema
def build_regex_from_object(
object: Union[str, BaseModel, Dict], whitespace_pattern: Optional[str] = None
):
if isinstance(object, type(BaseModel)):
schema = json.dumps(object.model_json_schema())
elif isinstance(object, Dict):
schema = json.dumps(object)
else:
schema = object
return build_regex_from_schema(schema, whitespace_pattern)
class OutlinesGrammar:
def __init__(
self,
tokenizer_path,
tokenizer_args_dict,
enable=True,
skip_tokenizer_init=False,
constrained_json_whitespace_pattern=None,
):
super().__init__(enable=enable)
guide: RegexGuide,
state: int,
jump_forward_map: Union[OutlinesJumpForwardMap, None],
) -> None:
self.guide = guide
self.state = state
self.jump_forward_map = jump_forward_map
if (
skip_tokenizer_init
or tokenizer_path.endswith(".json")
or tokenizer_path.endswith(".model")
def accept_token(self, token: int):
self.state = self.guide.get_next_state(self.state, token)
def try_jump_forward(self, tokenizer) -> Optional[Tuple]:
if not self.jump_forward_map:
return None
jump_forward_bytes = self.jump_forward_map.jump_forward_byte(self.state)
if jump_forward_bytes is None or len(jump_forward_bytes) <= 1:
return None
# preprocess the jump forward string
suffix_bytes = []
continuation_range = range(0x80, 0xC0)
cur_state = self.state
while (
len(jump_forward_bytes) and jump_forward_bytes[0][0] in continuation_range
):
# Do not support TiktokenTokenizer or SentencePieceTokenizer
return
# continuation bytes
byte_edge = jump_forward_bytes.pop(0)
suffix_bytes.append(byte_edge[0])
cur_state = byte_edge[1]
suffix_tokens = [f"<0x{hex(b)[2:].upper()}>" for b in suffix_bytes]
suffix_ids = tokenizer.convert_tokens_to_ids(suffix_tokens)
return suffix_ids, cur_state
def jump_forward_str_state(self, helper: Tuple[List[int], str]) -> Tuple[str, int]:
_, cur_state = helper
return self.jump_forward_map.jump_forward_symbol(cur_state)
def jump_and_retokenize(
self, old_output_ids: List[int], new_output_ids: List[int], next_state: int
):
self.state = next_state
def fill_vocab_mask(self, vocab_mask: torch.Tensor):
vocab_mask.fill_(1)
vocab_mask[self.guide.get_next_instruction(self.state).tokens] = 0
class OutlinesGrammarBackend:
def __init__(
self,
tokenizer,
whitespace_patterns: bool,
allow_jump_forward: bool,
):
self.executor = ThreadPoolExecutor()
self.grammar_cache = OutlinesCache(
tokenizer,
whitespace_pattern=whitespace_patterns,
)
self.jump_forward_cache = (
OutlinesJumpForwardCache() if allow_jump_forward else None
)
def _query(self, key: Tuple[str, str]) -> OutlinesGrammar:
guide, regex = self.grammar_cache.query(key)
jump_forward_map = (
self.jump_forward_cache.query(regex) if self.jump_forward_cache else None
)
return OutlinesGrammar(guide, 0, jump_forward_map)
def query(self, key: Tuple[str, str]) -> Future:
return self.executor.submit(self._query, key)
def reset(self):
self.grammar_cache.reset()
if self.jump_forward_cache:
self.jump_forward_cache.reset()
class OutlinesCache(BaseToolCache):
def __init__(
self,
tokenizer,
whitespace_pattern=None,
):
super().__init__(enable=True)
tokenizer_args_dict.setdefault("padding_side", "left")
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, **tokenizer_args_dict)
try:
self.outlines_tokenizer = TransformerTokenizer(tokenizer)
except AttributeError:
......@@ -69,7 +167,7 @@ class OutlinesCache(BaseToolCache):
self.outlines_tokenizer.vocabulary = (
self.outlines_tokenizer.tokenizer.get_vocab()
)
self.constrained_json_whitespace_pattern = constrained_json_whitespace_pattern
self.whitespace_pattern = whitespace_pattern
def init_value(self, key):
key_type, key_string = key
......@@ -77,7 +175,7 @@ class OutlinesCache(BaseToolCache):
try:
regex = build_regex_from_object(
key_string,
whitespace_pattern=self.constrained_json_whitespace_pattern,
whitespace_pattern=self.whitespace_pattern,
)
except NotImplementedError as e:
logger.warning(
......@@ -93,4 +191,13 @@ class OutlinesCache(BaseToolCache):
except InvalidSyntax as e:
logger.warning(f"skip invalid regex guide: {regex=}, {e=}")
return None, regex
return RegexGuide(regex, self.outlines_tokenizer), regex
ret = RegexGuide(regex, self.outlines_tokenizer), regex
return ret
def _query(self, key: Tuple[str, str]):
guide, regex = self.grammar_cache.query(key)
jump_forward_map = (
self.jump_forward_cache.query(regex) if self.jump_forward_cache else None
)
return OutlinesGrammar(guide, 0, jump_forward_map)
......@@ -164,7 +164,7 @@ class OutlinesJumpForwardMap:
)
class OutlinesJumpCache(BaseToolCache):
class OutlinesJumpForwardCache(BaseToolCache):
def __init__(self):
super().__init__()
......
......@@ -3,7 +3,9 @@ Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......@@ -11,50 +13,98 @@ See the License for the specific language governing permissions and
limitations under the License.
"""
"""Cache for the compressed finite state machine."""
"""Constrained decoding with xgrammar backend."""
from typing import Tuple
from concurrent.futures import Future, ThreadPoolExecutor
from typing import List, Tuple
from transformers import AutoTokenizer
import torch
try:
from xgrammar import CachedGrammarCompiler, CompiledGrammar, GrammarMatcher
import_error = None
except ImportError as e:
import_error = e
class Dummy:
pass
GrammarMatcher = Dummy
CompiledGrammar = Dummy
CachedGrammarCompiler = Dummy
GrammarMatcher = CompiledGrammar = CachedGrammarCompiler = Dummy
MAX_ROLLBACK_TOKENS = 10
class XGrammarJumpCache:
"""A dummy class."""
class XGrammarGrammar:
def reset(self):
pass
def __init__(self, matcher: GrammarMatcher, vocab_size: int) -> None:
self.matcher = matcher
self.vocab_size = vocab_size
def accept_token(self, token: int):
assert self.matcher.accept_token(token)
def try_jump_forward(self, tokenizer) -> Tuple[List[int], str]:
return [], self.matcher.find_jump_forward_string()
class XGrammarBackend:
def jump_forward_str_state(self, helper: Tuple[List[int], str]) -> Tuple[str, int]:
_, data = helper
return data, -1
def jump_and_retokenize(
self, old_output_ids: List[int], new_output_ids: List[int], next_state: int
):
k = 0
for i, old_id in enumerate(old_output_ids):
if old_id == new_output_ids[i]:
k = i + 1
else:
break
# rollback to the last token that is the same
if k < len(old_output_ids):
self.matcher.rollback(len(old_output_ids) - k)
for i in range(k, len(new_output_ids)):
assert self.matcher.accept_token(new_output_ids[i])
def fill_vocab_mask(self, vocab_mask: torch.Tensor):
# Note that this bitmask is a bitset, not bool
bitmask = self.matcher.get_next_token_bitmask()
# Mask the tokens that are not allowed
vocab_mask[
self.matcher.get_rejected_tokens_from_bitmask(bitmask, self.vocab_size)
] = 1
class XGrammarGrammarBackend:
def __init__(
self,
tokenizer_path,
tokenizer_args_dict,
skip_tokenizer_init=False,
whitespace_patterns=None,
tokenizer,
vocab_size: int,
):
# TODO(dark): how to deal with whitespace_patterns and skip_tokenizer_init
if skip_tokenizer_init:
return
if import_error:
raise import_error
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, **tokenizer_args_dict)
self.grammar_cache: CachedGrammarCompiler = CachedGrammarCompiler(
tokenizer_or_vocab=tokenizer
)
self.executor = ThreadPoolExecutor()
self.grammar_cache = XGrammarCache(tokenizer, vocab_size)
self.vocab_size = vocab_size
def _query(self, key: Tuple[str, str]) -> XGrammarGrammar:
return XGrammarGrammar(self.grammar_cache.query(key), self.vocab_size)
def query(self, key: Tuple[str, str]) -> Future:
return self.executor.submit(self._query, key)
def reset(self):
self.grammar_cache.reset()
class XGrammarCache:
def __init__(self, tokenizer, vocab_size: int):
self.grammar_cache = CachedGrammarCompiler(tokenizer_or_vocab=tokenizer)
self.vocab_size = vocab_size
def get_context(self, key: Tuple[str, str]) -> CompiledGrammar:
key_type, key_string = key
......@@ -65,10 +115,12 @@ class XGrammarBackend:
else:
raise ValueError(f"Invalid key_type: {key_type}")
def query(self, key: Tuple[str, str], vocab_size: int) -> GrammarMatcher:
def query(self, key: Tuple[str, str]) -> GrammarMatcher:
ctx = self.get_context(key)
return GrammarMatcher(
ctx, max_rollback_tokens=MAX_ROLLBACK_TOKENS, mask_vocab_size=vocab_size
ctx,
max_rollback_tokens=MAX_ROLLBACK_TOKENS,
mask_vocab_size=self.vocab_size,
)
def reset(self):
......
......@@ -37,7 +37,6 @@ import torch
from sglang.global_config import global_config
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.constrained.grammar import Grammar
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
......@@ -249,7 +248,7 @@ class Req:
self.embedding = None
# Constrained decoding
self.grammar: Optional[Grammar] = None
self.grammar = None
# The number of cached tokens, that were already cached in the KV cache
self.cached_tokens = 0
......@@ -359,8 +358,6 @@ class Req:
return
def jump_forward_and_retokenize(self, jump_forward_str, next_state):
assert self.grammar is not None and self.tokenizer is not None
if self.origin_input_text is None:
# Recovering text can only use unpadded ids
self.origin_input_text = self.tokenizer.decode(
......@@ -809,9 +806,10 @@ class ScheduleBatch:
for i, req in enumerate(self.reqs):
if req.grammar is not None:
jump_helper = req.grammar.try_jump(req.tokenizer)
if jump_helper.can_jump():
suffix_ids = jump_helper.suffix_ids
jump_helper = req.grammar.try_jump_forward(req.tokenizer)
if jump_helper:
suffix_ids, _ = jump_helper
# Current ids, for cache and revert
cur_all_ids = tuple(req.origin_input_ids + req.output_ids)[:-1]
cur_output_ids = req.output_ids
......@@ -827,6 +825,8 @@ class ScheduleBatch:
next_state,
) = req.grammar.jump_forward_str_state(jump_helper)
# Make the incrementally decoded text part of jump_forward_str
# so that the UTF-8 will not corrupt
jump_forward_str = new_text + jump_forward_str
if not req.jump_forward_and_retokenize(
jump_forward_str, next_state
......
......@@ -21,6 +21,7 @@ import threading
import time
import warnings
from collections import deque
from concurrent import futures
from types import SimpleNamespace
from typing import List, Optional
......@@ -29,7 +30,6 @@ import zmq
from sglang.global_config import global_config
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.constrained.grammar import GrammarBackend
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
......@@ -100,7 +100,7 @@ class Scheduler:
self.tp_rank = tp_rank
self.tp_size = server_args.tp_size
self.schedule_policy = server_args.schedule_policy
self.disable_regex_jump_forward = server_args.disable_regex_jump_forward
self.disable_jump_forward = server_args.disable_jump_forward
self.lora_paths = server_args.lora_paths
self.max_loras_per_batch = server_args.max_loras_per_batch
self.enable_overlap = server_args.enable_overlap_schedule
......@@ -234,22 +234,33 @@ class Scheduler:
self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
)
# Init the grammar cache for constrained generation
self.grammar_cache = None
# Init the grammar backend for constrained generation
self.grammar_queue: List[Req] = []
if not server_args.skip_tokenizer_init:
self.grammar_cache = GrammarBackend(
server_args.tokenizer_path,
{
"tokenizer_mode": server_args.tokenizer_mode,
"trust_remote_code": server_args.trust_remote_code,
},
skip_tokenizer_init=server_args.skip_tokenizer_init,
whitespace_patterns=server_args.constrained_json_whitespace_pattern,
backend=server_args.grammar_backend,
allow_jump=not server_args.disable_regex_jump_forward,
)
if server_args.grammar_backend == "outlines":
from sglang.srt.constrained.outlines_backend import (
OutlinesGrammarBackend,
)
self.grammar_backend = OutlinesGrammarBackend(
self.tokenizer,
whitespace_patterns=server_args.constrained_json_whitespace_pattern,
allow_jump_forward=not server_args.disable_jump_forward,
)
elif server_args.grammar_backend == "xgrammar":
from sglang.srt.constrained.xgrammar_backend import (
XGrammarGrammarBackend,
)
self.grammar_backend = XGrammarGrammarBackend(
self.tokenizer, vocab_size=self.model_config.vocab_size
)
else:
raise ValueError(
f"Invalid grammar backend: {server_args.grammar_backend}"
)
else:
self.grammar_backend = None
# Init new token estimation
assert (
......@@ -461,15 +472,14 @@ class Scheduler:
req.sampling_params.json_schema is not None
or req.sampling_params.regex is not None
):
assert self.grammar_cache is not None
assert self.grammar_backend is not None
if req.sampling_params.json_schema is not None:
req.grammar = self.grammar_cache.query(
req.grammar = self.grammar_backend.query(
("json", req.sampling_params.json_schema),
self.model_config.vocab_size,
)
elif req.sampling_params.regex is not None:
req.grammar = self.grammar_cache.query(
("regex", req.sampling_params.regex), self.model_config.vocab_size
req.grammar = self.grammar_backend.query(
("regex", req.sampling_params.regex)
)
# Truncate prompts that are too long
......@@ -638,14 +648,14 @@ class Scheduler:
return self.running_batch
def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
# Check if the grammar queue is ready
# Check if the grammar is ready in the grammar queue
if self.grammar_queue:
new_grammar_queue = []
for req in self.grammar_queue:
if req.grammar.done():
req.grammar = req.grammar.result()
try:
req.grammar = req.grammar.result(timeout=0.05)
self.waiting_queue.append(req)
else:
except futures._base.TimeoutError:
new_grammar_queue.append(req)
self.grammar_queue = new_grammar_queue
......@@ -783,7 +793,7 @@ class Scheduler:
)
# Check for jump-forward
if not self.disable_regex_jump_forward:
if not self.disable_jump_forward:
jump_forward_reqs = batch.check_for_jump_forward(self.pad_input_ids_func)
self.waiting_queue.extend(jump_forward_reqs)
if batch.is_empty():
......@@ -1142,8 +1152,8 @@ class Scheduler:
):
self.tree_cache.reset()
self.tree_cache_metrics = {"total": 0, "hit": 0}
if self.grammar_cache is not None:
self.grammar_cache.reset()
if self.grammar_backend is not None:
self.grammar_backend.reset()
# TODO(dark): reset the bnf cache
self.req_to_token_pool.clear()
self.token_to_kv_pool.clear()
......
......@@ -6,7 +6,6 @@ from typing import TYPE_CHECKING, List, Optional
import torch
import sglang.srt.sampling.penaltylib as penaltylib
from sglang.srt.constrained.grammar import Grammar
if TYPE_CHECKING:
from sglang.srt.managers.schedule_batch import ScheduleBatch
......@@ -31,7 +30,7 @@ class SamplingBatchInfo:
logit_bias: torch.Tensor = None
vocab_mask: Optional[torch.Tensor] = None
grammars: Optional[List[Optional[Grammar]]] = None
grammars: Optional[List] = None
# Penalizer
penalizer_orchestrator: Optional[penaltylib.BatchedPenalizerOrchestrator] = None
......@@ -146,7 +145,7 @@ class SamplingBatchInfo:
)
for i, grammar in enumerate(self.grammars):
if grammar is not None:
grammar.fill_vocab_mask(self.vocab_mask[i], self.vocab_size)
grammar.fill_vocab_mask(self.vocab_mask[i])
def filter_batch(self, unfinished_indices: List[int], new_indices: torch.Tensor):
if self.penalizer_orchestrator:
......
......@@ -111,7 +111,7 @@ class ServerArgs:
disable_flashinfer: bool = False
disable_flashinfer_sampling: bool = False
disable_radix_cache: bool = False
disable_regex_jump_forward: bool = False
disable_jump_forward: bool = False
disable_cuda_graph: bool = False
disable_cuda_graph_padding: bool = False
disable_disk_cache: bool = False
......@@ -574,7 +574,7 @@ class ServerArgs:
type=str,
choices=["xgrammar", "outlines"],
default=ServerArgs.grammar_backend,
help="Choose the backend for constrained decoding.",
help="Choose the backend for grammar-guided decoding.",
)
# Optimization/debug options
......@@ -594,9 +594,9 @@ class ServerArgs:
help="Disable RadixAttention for prefix caching.",
)
parser.add_argument(
"--disable-regex-jump-forward",
"--disable-jump-forward",
action="store_true",
help="Disable regex jump-forward.",
help="Disable jump-forward for grammar-guided decoding.",
)
parser.add_argument(
"--disable-cuda-graph",
......@@ -616,7 +616,6 @@ class ServerArgs:
parser.add_argument(
"--disable-custom-all-reduce",
action="store_true",
default=False,
help="Disable the custom all-reduce kernel and fall back to NCCL.",
)
parser.add_argument(
......@@ -688,7 +687,6 @@ class ServerArgs:
)
parser.add_argument(
"--delete-ckpt-after-loading",
default=ServerArgs.delete_ckpt_after_loading,
action="store_true",
help="Delete the model checkpoint after loading the model.",
)
......
......@@ -61,18 +61,27 @@ class TestJSONConstrained(unittest.TestCase):
"logprob_start_len": 0,
},
)
print(json.dumps(response.json()))
ret = response.json()
print(json.dumps(ret))
print("=" * 100)
if not json_schema:
return
# Make sure the json output is valid
try:
js_obj = json.loads(response.json()["text"])
js_obj = json.loads(ret["text"])
except (TypeError, json.decoder.JSONDecodeError):
raise
assert isinstance(js_obj["name"], str)
assert isinstance(js_obj["population"], int)
self.assertIsInstance(js_obj["name"], str)
self.assertIsInstance(js_obj["population"], int)
# Make sure jump forward is triggered
self.assertGreater(
ret["meta_info"]["completion_tokens"],
ret["meta_info"]["completion_tokens_wo_jump_forward"],
)
def test_json_generate(self):
self.run_decode(json_schema=self.json_schema)
......@@ -100,8 +109,9 @@ class TestJSONConstrained(unittest.TestCase):
except (TypeError, json.decoder.JSONDecodeError):
print("JSONDecodeError", text)
raise
assert isinstance(js_obj["name"], str), f"{js_obj=}"
assert isinstance(js_obj["population"], int), f"{js_obj=}"
self.assertIsInstance(js_obj["name"], str)
self.assertIsInstance(js_obj["population"], int)
def test_mix_json_and_other(self):
json_schemas = [None, None, self.json_schema, self.json_schema] * 10
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment