Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
b57abe16
"docs/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "844221ae4e20a8939ee052f75874e284f75d4c5c"
Unverified
Commit
b57abe16
authored
Mar 22, 2024
by
Jani Monoses
Committed by
GitHub
Mar 22, 2024
Browse files
Add StableLM model. (#301)
parent
e57f0792
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
293 additions
and
0 deletions
+293
-0
python/sglang/srt/models/stablelm.py
python/sglang/srt/models/stablelm.py
+293
-0
No files found.
python/sglang/srt/models/stablelm.py
0 → 100644
View file @
b57abe16
# This code is based on:
# https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/stablelm.py
"""Inference-only StableLM-2 (https://huggingface.co/stabilityai/stablelm-2-1_6b)
model compatible with HuggingFace weights."""
from
typing
import
Optional
,
Tuple
import
torch
from
torch
import
nn
from
transformers
import
PretrainedConfig
from
sglang.srt.layers.logits_processor
import
LogitsProcessor
from
sglang.srt.layers.radix_attention
import
RadixAttention
from
sglang.srt.managers.router.model_runner
import
InputMetadata
from
vllm.model_executor.layers.activation
import
SiluAndMul
from
vllm.model_executor.layers.linear
import
(
LinearMethodBase
,
MergedColumnParallelLinear
,
QKVParallelLinear
,
RowParallelLinear
,
)
from
vllm.model_executor.layers.rotary_embedding
import
get_rope
from
vllm.model_executor.layers.vocab_parallel_embedding
import
(
VocabParallelEmbedding
,
ParallelLMHead
,
)
from
vllm.model_executor.parallel_utils.parallel_state
import
(
get_tensor_model_parallel_world_size
,
)
from
vllm.model_executor.weight_utils
import
(
default_weight_loader
,
hf_model_weights_iterator
,
)
class
StablelmMLP
(
nn
.
Module
):
def
__init__
(
self
,
config
:
PretrainedConfig
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
)
->
None
:
super
().
__init__
()
self
.
config
=
config
self
.
hidden_size
=
config
.
hidden_size
self
.
intermediate_size
=
config
.
intermediate_size
self
.
gate_up_proj
=
MergedColumnParallelLinear
(
config
.
hidden_size
,
[
config
.
intermediate_size
]
*
2
,
bias
=
False
,
linear_method
=
linear_method
,
)
self
.
down_proj
=
RowParallelLinear
(
config
.
intermediate_size
,
config
.
hidden_size
,
bias
=
False
)
self
.
act_fn
=
SiluAndMul
()
def
forward
(
self
,
x
:
torch
.
Tensor
)
->
torch
.
Tensor
:
gate_up
,
_
=
self
.
gate_up_proj
(
x
)
x
=
self
.
act_fn
(
gate_up
)
x
,
_
=
self
.
down_proj
(
x
)
return
x
class
StablelmAttention
(
nn
.
Module
):
def
__init__
(
self
,
config
:
PretrainedConfig
,
layer_id
:
int
=
0
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
config
=
config
self
.
hidden_size
=
config
.
hidden_size
tp_size
=
get_tensor_model_parallel_world_size
()
self
.
total_num_heads
=
config
.
num_attention_heads
self
.
num_heads
=
self
.
total_num_heads
//
tp_size
self
.
total_num_key_value_heads
=
config
.
num_key_value_heads
if
self
.
total_num_key_value_heads
>=
tp_size
:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert
self
.
total_num_key_value_heads
%
tp_size
==
0
else
:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert
tp_size
%
self
.
total_num_key_value_heads
==
0
self
.
num_key_value_heads
=
max
(
1
,
self
.
total_num_key_value_heads
//
tp_size
)
self
.
head_dim
=
self
.
hidden_size
//
self
.
total_num_heads
self
.
max_position_embeddings
=
config
.
max_position_embeddings
rope_pct
=
getattr
(
config
,
"rope_pct"
,
getattr
(
config
,
"partial_rotary_factor"
,
1
)
)
self
.
rotary_ndims
=
int
(
self
.
head_dim
*
rope_pct
)
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
q_size
=
self
.
num_heads
*
self
.
head_dim
self
.
kv_size
=
self
.
num_key_value_heads
*
self
.
head_dim
self
.
qkv_bias
=
getattr
(
config
,
"use_qkv_bias"
,
False
)
if
(
self
.
head_dim
*
self
.
num_heads
*
tp_size
)
!=
self
.
hidden_size
:
raise
ValueError
(
f
"hidden_size must be divisible by num_heads "
f
"(got `hidden_size`:
{
self
.
hidden_size
}
"
f
" and `num_heads`:
{
self
.
num_heads
}
)."
)
self
.
qkv_proj
=
QKVParallelLinear
(
self
.
hidden_size
,
self
.
head_dim
,
self
.
total_num_heads
,
self
.
total_num_key_value_heads
,
self
.
qkv_bias
,
linear_method
=
linear_method
,
)
self
.
o_proj
=
RowParallelLinear
(
self
.
total_num_heads
*
self
.
head_dim
,
self
.
hidden_size
,
bias
=
False
,
linear_method
=
linear_method
,
)
self
.
rotary_emb
=
get_rope
(
self
.
head_dim
,
rotary_dim
=
self
.
rotary_ndims
,
max_position
=
self
.
config
.
max_position_embeddings
,
base
=
self
.
config
.
rope_theta
,
)
self
.
attn
=
RadixAttention
(
self
.
num_heads
,
self
.
head_dim
,
self
.
scaling
,
num_kv_heads
=
self
.
num_key_value_heads
,
layer_id
=
layer_id
,
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
)
->
torch
.
Tensor
:
qkv
,
_
=
self
.
qkv_proj
(
hidden_states
)
q
,
k
,
v
=
qkv
.
split
([
self
.
q_size
,
self
.
kv_size
,
self
.
kv_size
],
dim
=-
1
)
q
,
k
=
self
.
rotary_emb
(
positions
,
q
,
k
)
attn_output
=
self
.
attn
(
q
,
k
,
v
,
input_metadata
)
output
,
_
=
self
.
o_proj
(
attn_output
)
return
output
class
StablelmDecoderLayer
(
nn
.
Module
):
def
__init__
(
self
,
config
:
PretrainedConfig
,
layer_id
:
int
=
0
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
self_attn
=
StablelmAttention
(
config
,
layer_id
=
layer_id
)
self
.
mlp
=
StablelmMLP
(
config
,
linear_method
)
norm_eps
=
getattr
(
config
,
"norm_eps"
,
getattr
(
config
,
"layer_norm_eps"
,
1e-05
))
self
.
input_layernorm
=
nn
.
LayerNorm
(
config
.
hidden_size
,
eps
=
norm_eps
)
self
.
post_attention_layernorm
=
nn
.
LayerNorm
(
config
.
hidden_size
,
eps
=
norm_eps
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
# Self Attention
residual
=
hidden_states
hidden_states
=
self
.
input_layernorm
(
hidden_states
)
hidden_states
=
self
.
self_attn
(
positions
=
positions
,
hidden_states
=
hidden_states
,
input_metadata
=
input_metadata
,
)
hidden_states
=
residual
+
hidden_states
# Fully Connected
residual
=
hidden_states
hidden_states
=
self
.
post_attention_layernorm
(
hidden_states
)
hidden_states
=
self
.
mlp
(
hidden_states
)
hidden_states
=
residual
+
hidden_states
return
hidden_states
,
residual
class
StableLMEpochModel
(
nn
.
Module
):
def
__init__
(
self
,
config
:
PretrainedConfig
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
)
->
None
:
super
().
__init__
()
self
.
embed_tokens
=
VocabParallelEmbedding
(
config
.
vocab_size
,
config
.
hidden_size
,
)
self
.
layers
=
nn
.
ModuleList
(
[
StablelmDecoderLayer
(
config
,
i
,
linear_method
)
for
i
in
range
(
config
.
num_hidden_layers
)
]
)
norm_eps
=
getattr
(
config
,
"norm_eps"
,
getattr
(
config
,
"layer_norm_eps"
,
1e-05
))
self
.
norm
=
nn
.
LayerNorm
(
config
.
hidden_size
,
eps
=
norm_eps
)
def
forward
(
self
,
input_ids
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
input_embeds
:
torch
.
Tensor
=
None
,
)
->
torch
.
Tensor
:
if
input_embeds
is
None
:
hidden_states
=
self
.
embed_tokens
(
input_ids
)
else
:
hidden_states
=
input_embeds
for
i
in
range
(
len
(
self
.
layers
)):
layer
=
self
.
layers
[
i
]
hidden_states
,
residual
=
layer
(
positions
,
hidden_states
,
input_metadata
,
)
hidden_states
=
self
.
norm
(
hidden_states
)
return
hidden_states
class
StableLmForCausalLM
(
nn
.
Module
):
def
__init__
(
self
,
config
:
PretrainedConfig
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
config
=
config
self
.
linear_method
=
linear_method
self
.
model
=
StableLMEpochModel
(
config
,
linear_method
)
self
.
lm_head
=
ParallelLMHead
(
config
.
vocab_size
,
config
.
hidden_size
)
self
.
logits_processor
=
LogitsProcessor
(
config
)
def
forward
(
self
,
input_ids
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
input_metadata
:
InputMetadata
,
input_embeds
:
torch
.
Tensor
=
None
,
)
->
torch
.
Tensor
:
hidden_states
=
self
.
model
(
input_ids
,
positions
,
input_metadata
,
input_embeds
)
return
self
.
logits_processor
(
input_ids
,
hidden_states
,
self
.
lm_head
.
weight
,
input_metadata
)
def
load_weights
(
self
,
model_name_or_path
:
str
,
cache_dir
:
Optional
[
str
]
=
None
,
load_format
:
str
=
"auto"
,
revision
:
Optional
[
str
]
=
None
,
):
stacked_params_mapping
=
[
# (param_name, shard_name, shard_id)
(
"qkv_proj"
,
"q_proj"
,
"q"
),
(
"qkv_proj"
,
"k_proj"
,
"k"
),
(
"qkv_proj"
,
"v_proj"
,
"v"
),
(
"gate_up_proj"
,
"gate_proj"
,
0
),
(
"gate_up_proj"
,
"up_proj"
,
1
),
]
params_dict
=
dict
(
self
.
named_parameters
())
for
name
,
loaded_weight
in
hf_model_weights_iterator
(
model_name_or_path
,
cache_dir
,
load_format
,
revision
):
if
"rotary_emb.inv_freq"
in
name
:
continue
if
"rotary_emb.cos_cached"
in
name
or
"rotary_emb.sin_cached"
in
name
:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for
param_name
,
weight_name
,
shard_id
in
stacked_params_mapping
:
if
weight_name
not
in
name
:
continue
name
=
name
.
replace
(
weight_name
,
param_name
)
# Skip loading extra bias for GPTQ models.
if
name
.
endswith
(
".bias"
)
and
name
not
in
params_dict
:
continue
param
=
params_dict
[
name
]
weight_loader
=
param
.
weight_loader
weight_loader
(
param
,
loaded_weight
,
shard_id
)
break
else
:
# Skip loading extra bias for GPTQ models.
if
name
.
endswith
(
".bias"
)
and
name
not
in
params_dict
:
continue
param
=
params_dict
[
name
]
weight_loader
=
getattr
(
param
,
"weight_loader"
,
default_weight_loader
)
weight_loader
(
param
,
loaded_weight
)
EntryClass
=
StableLmForCausalLM
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment