"tests/git@developer.sourcefind.cn:OpenDAS/fairscale.git" did not exist on "40e7450f6fd1ba27a71c58da2b49cd19a46b7678"
Commit b4dff7f5 authored by lizhigong's avatar lizhigong Committed by maxiao1
Browse files

adaptation w4A8 quantization

parent c0352f4a
...@@ -5,6 +5,15 @@ from typing import List, Optional, Tuple ...@@ -5,6 +5,15 @@ from typing import List, Optional, Tuple
import torch import torch
from sglang.srt.utils import get_bool_env_var, is_hip, is_hpu, is_npu from sglang.srt.utils import get_bool_env_var, is_hip, is_hpu, is_npu
try:
from lmslim import quant_ops
from lmslim import quant_tools
except Exception:
print("INFO: Please install lmslim if you want to infer gptq or awq or w8a8 model.\n")
try:
import lightop
except Exception:
print("INFO: Please install lightop if you want to infer awq of marlin.\n")
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
use_vllm_custom_allreduce = get_bool_env_var( use_vllm_custom_allreduce = get_bool_env_var(
...@@ -175,3 +184,25 @@ def mscclpp_allreduce( ...@@ -175,3 +184,25 @@ def mscclpp_allreduce(
context: int, inp: torch.Tensor, out: torch.Tensor, nthreads: int, nblocks: int context: int, inp: torch.Tensor, out: torch.Tensor, nthreads: int, nblocks: int
) -> None: ) -> None:
return sgl_kernel.allreduce.mscclpp_allreduce(context, inp, out, nthreads, nblocks) return sgl_kernel.allreduce.mscclpp_allreduce(context, inp, out, nthreads, nblocks)
def triton_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
bias: Optional[torch.Tensor] = None,
best_config:Optional[list] = None) -> torch.Tensor:
return quant_ops.triton_scaled_mm(a, b,scale_a,scale_b,out_dtype,bias,best_config)
def triton_int8_gemm_helper(m: int,
n: int,
k: int,
per_token_act_quant: bool,
per_out_channel_weight_quant: bool,
use_bias: bool,
out_dtype: type[torch.dtype] = torch.float16,
device: str = "cuda:0",
best_config:Optional[list] = None,
repeat:Optional[int] = 2):
return quant_tools.triton_int8_gemm_helper(m,n,k,per_token_act_quant,per_out_channel_weight_quant,use_bias,out_dtype,device,best_config,repeat)
\ No newline at end of file
from typing import Any, Callable, Dict, List, Optional
import torch
from sglang.srt.layers.linear import set_weight_attrs
from sglang.srt.distributed import get_tensor_model_parallel_world_size
from torch.nn.parameter import Parameter
from sglang.srt.layers.linear import LinearBase
from sglang.srt.layers.quantization.base_config import LinearMethodBase, QuantizationConfig, QuantizeMethodBase, FusedMoEMethodBase
from sglang.srt.layers.parameter import (
ChannelQuantScaleParameter,
_ColumnvLLMParameter,
RowvLLMParameter,
)
from lmslim.layers.gemm.int8_utils import (
per_token_group_quant_int8,
per_token_quant_int8)
from sglang.srt import _custom_ops as ops
from vllm.utils import W8a8GetCacheJSON
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
import os
class ModelWeightParameter(_ColumnvLLMParameter, RowvLLMParameter):
"""
Parameter class for linear layer weights. Uses both column and
row parallelism.
"""
pass
W8A8_TRITONJSON=W8a8GetCacheJSON()
def baseline_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
scales= scale_a* scale_b.T
gemmout= torch.mm(
a.to(dtype=torch.float32), b.to(dtype=torch.float32))
output = (scales *gemmout).to(out_dtype)
if bias is not None:
output = output + bias
return output.to(out_dtype)
class SlimQuantW4A8Int8Config(QuantizationConfig):
"""Config class for W8A8 Int8 Quantization.
- Weight: static, per-channel, symmetric
- Activation: dynamic, per-token, symmetric
"""
def __init__(self):
pass
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.float16, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 75
@classmethod
def get_name(self) -> str:
return "slimquant_w4a8"
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "SlimQuantW4A8Int8Config":
return cls()
def get_quant_method(
self,
layer: torch.nn.Module,
prefix: str,
) -> Optional["QuantizeMethodBase"]:
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
if isinstance(layer, LinearBase):
return SlimQuantW4A8Int8LinearMethod(self)
elif isinstance(layer, FusedMoE):
return SlimQuantW4A8Int8MoEMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
class SlimQuantW4A8Int8LinearMethod(LinearMethodBase):
def __init__(self, quantization_config: SlimQuantW4A8Int8Config):
self.quantization_config = quantization_config
self.tritonsingleton= W8a8GetCacheJSON()
self.w8a8_strategy=int(os.getenv('W8A8_SUPPORT_METHODS', '1'))
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
n=layer.weight.shape[0]
k=layer.weight.shape[1]
if self.w8a8_strategy==1:
if {n,k} not in self.tritonsingleton.weight_shapes:
self.tritonsingleton.weight_shapes.append({n,k})
json_file=self.tritonsingleton.get_w8a8json_name(n,k)
configs_dict=self.tritonsingleton.get_triton_cache(json_file,n,k)
if configs_dict:
self.tritonsingleton.triton_json_dict.update(configs_dict)
for key, value in configs_dict.items():
m=int(key.split('_')[0])
ops.triton_int8_gemm_helper(m=m,n=n,k=k,per_token_act_quant=True,per_out_channel_weight_quant=True,use_bias=False,device=layer.weight.device,best_config=value)
else:
weight_data=layer.weight.data
_weight=weight_data.T.contiguous().reshape(n,-1)
layer.weight.data=_weight
layer.weight = Parameter(layer.weight.t(), requires_grad=False)
layer.weight_scale = Parameter(layer.weight_scale.data, requires_grad=False)
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
weight_loader = extra_weight_attrs.get("weight_loader")
self.logical_widths = output_partition_sizes
weight = ModelWeightParameter(
data=torch.empty(
sum(output_partition_sizes), input_size_per_partition, dtype=torch.int8
),
input_dim=1,
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight", weight)
weight_scale = ChannelQuantScaleParameter(
data=torch.empty((sum(output_partition_sizes), 1), dtype=torch.float32),
output_dim=0,
weight_loader=weight_loader,
)
layer.register_parameter("weight_scale", weight_scale)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
input_quant_args: Optional[list[torch.Tensor]] = None,
silu_quant_args: Optional[list[torch.Tensor]] = None
):
# if envs.USE_FUSED_RMS_QUANT and input_quant_args is not None:
# assert len(input_quant_args) == 2
# x_q, x_scale = input_quant_args
# elif envs.USE_FUSED_SILU_MUL_QUANT and silu_quant_args is not None:
# x_q, x_scale = silu_quant_args
# else:
x_q, x_scale = per_token_quant_int8(x)
if self.w8a8_strategy==1:
m=x_q.shape[0]
k=x_q.shape[1]
n=layer.weight.shape[1]
if len(W8A8_TRITONJSON.triton_json_dict)==0:
best_config=None
elif f"1_{n}_{k}" in W8A8_TRITONJSON.triton_json_dict:
if m<=16:
m_=m
elif m<=64:
m_= (m + 3) & -4 #取值到最近的4的倍数
elif m<=160:
m_=(m + 7) & -8
elif m<200: #256
m_=160
elif m<480: #512
m_=256
elif m<960: #1024
m_=512
elif m<2048:
m_=1024
elif m<4096:
m_=2048
elif m<6000:
m_=4096
else:
m_=8192
best_config=W8A8_TRITONJSON.triton_json_dict[f"{m_}_{n}_{k}"]
else:
best_config=None
#if best_config==None:
# print("m:{},n:{},k:{}".format(m,n,k))
# print("config not found!")
return ops.triton_scaled_mm(x_q,
layer.weight,
scale_a=x_scale,
scale_b=layer.weight_scale,
out_dtype=x.dtype,
bias=bias,best_config=best_config)
elif self.w8a8_strategy==2:
return ops.cutlass_scaled_mm(x_q,
layer.weight,
scale_a=x_scale,
scale_b=layer.weight_scale,
out_dtype=x.dtype,
bias=bias)
else:
return ops.rocblas_scaled_mm(x_q,
layer.weight,
scale_a=x_scale,
scale_b=layer.weight_scale,
out_dtype=x.dtype,
bias=bias)
class SlimQuantW4A8Int8MoEMethod:
"""MoE method for W4A8INT8.
Supports loading INT8 checkpoints with static weight scale and
dynamic/static activation scale.
Also supports loading quantized FP16/BF16 model checkpoints with dynamic
activation scaling. The weight scaling factor will be initialized after
the model weights are loaded.
Args:
quant_config: The quantization config.
"""
def __new__(cls, *args, **kwargs):
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
if not hasattr(cls, "_initialized"):
original_init = cls.__init__
new_cls = type(
cls.__name__,
(FusedMoEMethodBase,),
{
"__init__": original_init,
**{k: v for k, v in cls.__dict__.items() if k != "__dict__"},
},
)
obj = super(new_cls, new_cls).__new__(new_cls)
obj.__init__(*args, **kwargs)
return obj
return super().__new__(cls)
def __init__(self, quant_config):
self.quant_config = quant_config
self.tritonsingleton= W8a8GetCacheJSON()
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
tp_size = get_tensor_model_parallel_world_size()
# WEIGHTS
w13_weight = torch.nn.Parameter(
torch.empty(
num_experts, 2 * intermediate_size, hidden_size//2, dtype=torch.int8
),
requires_grad=False,
)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
w2_weight = torch.nn.Parameter(
torch.empty(num_experts, hidden_size, intermediate_size//2, dtype=torch.int8),
requires_grad=False,
)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
w13_weight_scale = torch.nn.Parameter(
torch.ones(num_experts, 2 * intermediate_size, 1, dtype=torch.float32),
requires_grad=False,
)
w2_weight_scale = torch.nn.Parameter(
torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
requires_grad=False,
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
)
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
w13_input_scale = None
layer.register_parameter("w13_input_scale", w13_input_scale)
w2_input_scale = None
layer.register_parameter("w2_input_scale", w2_input_scale)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
E=layer.w13_weight.shape[0]
N1=layer.w13_weight.shape[1]
N2=layer.w2_weight.shape[1]
K=N1//2
if [E,N1,N2,K] not in self.tritonsingleton.moe_weight_shapes:
self.tritonsingleton.moe_weight_shapes.append([E,N1,N2,K])
TOPK= self.tritonsingleton.topk
json_file=self.tritonsingleton.get_moeint8json_name(E,N1,N2,K,TOPK,use_int4_w4a8=True)
configs_dict=self.tritonsingleton.get_moeint8_triton_cache(json_file,E,N1,N2,K,TOPK)
#warmup
if configs_dict:
self.tritonsingleton.triton_moejson_dict.update(configs_dict)
layer.w13_weight = Parameter(layer.w13_weight, requires_grad=False)
layer.w2_weight = Parameter(layer.w2_weight, requires_grad=False)
layer.w13_weight_scale = Parameter(
layer.w13_weight_scale.data, requires_grad=False
)
layer.w2_weight_scale = Parameter(
layer.w2_weight_scale.data, requires_grad=False
)
def create_moe_runner(
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
):
self.moe_runner_config = moe_runner_config
self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
use_nn_moe: Optional[bool] = False,
routed_scaling_factor: Optional[float] = None,
use_fused_gate: Optional[bool] = False,
**_
) -> torch.Tensor:
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
if enable_eplb:
raise NotImplementedError(
"EPLB not supported for `SlimQuantW4A8Int8MoEMethod` yet.")
# Expert selection
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
routed_scaling_factor=routed_scaling_factor,
use_fused_gate=use_fused_gate
)
return fused_experts(
x,
layer.w13_weight,
layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
use_int4_w4a8=True,
per_channel_quant=True,
activation=activation,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
w1_scale=(layer.w13_weight_scale),
w2_scale=(layer.w2_weight_scale),
a1_scale=layer.w13_input_scale,
a2_scale=layer.w2_input_scale,
use_nn_moe=use_nn_moe,
)
from typing import Any, Callable, Dict, List, Optional
from sglang.srt.layers.moe.token_dispatcher.base import CombineInput
from sglang.srt.layers.moe.token_dispatcher.standard import StandardCombineInput, StandardDispatchOutput
import torch
from sglang.srt import _custom_ops as ops
from sglang.srt.utils import set_weight_attrs
from sglang.srt.distributed import get_tensor_model_parallel_world_size
from torch.nn.parameter import Parameter
from sglang.srt.layers.linear import LinearBase
from sglang.srt.layers.quantization import QuantizationConfig
from sglang.srt.layers.quantization.w4a8_utils import w4a8_weight_repack_impl
from sglang.srt.layers.quantization.base_config import (FusedMoEMethodBase, QuantizeMethodBase)
from sglang.srt.layers.quantization.slimquant_w4a8 import SlimQuantW4A8Int8LinearMethod
from sglang.srt.layers.moe import MoeRunner, MoeRunnerBackend, MoeRunnerConfig
try:
from lmslim.layers.fused_moe.fuse_moe_w4a8_marlin import fused_experts_impl_w4a8_marlin
except Exception:
print("INFO: Please install lmslim if you want to infer the quantitative model of moe.\n")
class MarlinMoeWorkspace:
"""
Singleton manager for device-specific workspace buffers used by w4a8 Marlin-MoE.
global_reduce_buffer will take 1.5MB * cus (about 120MB for BW200) memoery in each device
"""
_instances = {}
def __new__(cls, device):
if device not in cls._instances:
instance = super().__new__(cls)
instance._initialized = False
cls._instances[device] = instance
return cls._instances[device]
def __init__(self, device):
if self._initialized:
return
sms = torch.cuda.get_device_properties(device).multi_processor_count
self.workspace = torch.zeros(
500, dtype=torch.int, device=device, requires_grad=False
)
self.global_reduce_buffer = torch.zeros(
sms * 6 * 128 * 512, dtype=torch.int, device=device, requires_grad=False
)
self._initialized = True
def get_buffers(self):
return self.workspace, self.global_reduce_buffer
def baseline_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
scales= scale_a* scale_b.T
gemmout= torch.mm(
a.to(dtype=torch.float32), b.to(dtype=torch.float32))
output = (scales *gemmout).to(out_dtype)
if bias is not None:
output = output + bias
return output.to(out_dtype)
class SlimQuantW4A8Int8MarlinConfig(QuantizationConfig):
"""Config class for W4A8 Int8 Quantization.
- Weight: static, per-channel, symmetric
- Activation: dynamic, per-token, symmetric
"""
def __init__(self):
pass
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.float16, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 75
@classmethod
def get_name(self) -> str:
return "slimquant_w4a8_marlin"
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "SlimQuantW4A8Int8MarlinConfig":
return cls()
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant) -> Optional[str]:
if hf_quant_cfg.get("quant_method") == "slimquant_w4a8" \
and user_quant == "slimquant_w4a8_marlin":
return cls.get_name()
return None
def get_quant_method(
self,
layer: torch.nn.Module,
prefix: str,
) -> Optional["QuantizeMethodBase"]:
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
if isinstance(layer, LinearBase):
return SlimQuantW4A8Int8LinearMethod(self)
elif isinstance(layer, FusedMoE):
return SlimQuantW4A8Int8MarlinMoEMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
class SlimQuantW4A8Int8MarlinMoEMethod:
"""MoE method for W4A8INT8 Marlin.
Supports loading INT8 checkpoints with static weight scale and
dynamic/static activation scale.
Args:
quant_config: The quantization config.
"""
def __new__(cls, *args, **kwargs):
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
if not hasattr(cls, "_initialized"):
original_init = cls.__init__
new_cls = type(
cls.__name__,
(FusedMoEMethodBase,),
{
"__init__": original_init,
**{k: v for k, v in cls.__dict__.items() if k != "__dict__"},
},
)
obj = super(new_cls, new_cls).__new__(new_cls)
obj.__init__(*args, **kwargs)
return obj
return super().__new__(cls)
def __init__(self, quant_config):
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
tp_size = get_tensor_model_parallel_world_size()
intermediate_size = intermediate_size_per_partition
# WEIGHTS
w13_weight = torch.nn.Parameter(
torch.empty(
num_experts, 2 * intermediate_size, hidden_size//2, dtype=torch.int8
),
requires_grad=False,
)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
w2_weight = torch.nn.Parameter(
torch.empty(num_experts, hidden_size, intermediate_size//2, dtype=torch.int8),
requires_grad=False,
)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
w13_weight_scale = torch.nn.Parameter(
torch.ones(num_experts, 2 * intermediate_size, 1, dtype=torch.float32),
requires_grad=False,
)
w2_weight_scale = torch.nn.Parameter(
torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
requires_grad=False,
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
)
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
w13_input_scale = None
layer.register_parameter("w13_input_scale", w13_input_scale)
w2_input_scale = None
layer.register_parameter("w2_input_scale", w2_input_scale)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
layer.w13_weight_scale = Parameter(
layer.w13_weight_scale.data, requires_grad=False
)
layer.w2_weight_scale = Parameter(
layer.w2_weight_scale.data, requires_grad=False
)
layer.w13_weight = Parameter(w4a8_weight_repack_impl(layer.w13_weight), requires_grad=False)
layer.w2_weight = Parameter(w4a8_weight_repack_impl(layer.w2_weight), requires_grad=False)
def create_moe_runner(
self, layer: torch.nn.Module, moe_runner_config: MoeRunnerConfig
):
self.moe_runner_config = moe_runner_config
self.runner = MoeRunner(MoeRunnerBackend.TRITON, moe_runner_config)
def apply(
self,
layer: torch.nn.Module,
dispatch_output: StandardDispatchOutput,
) -> CombineInput:
x = dispatch_output.hidden_states
topk_output = dispatch_output.topk_output
from sglang.srt.layers.moe.topk import apply_topk_weights_cpu
topk_weights, topk_ids, _ = topk_output
x, topk_weights = apply_topk_weights_cpu(
self.moe_runner_config.apply_router_weight_on_input, topk_weights, x
)
workspace, global_reduce_buffer = MarlinMoeWorkspace(x.device).get_buffers()
output = fused_experts_impl_w4a8_marlin(
x,
layer.w13_weight,
layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
workspace=workspace,
global_reduce_buffer=global_reduce_buffer,
inplace=True,
use_int4_w4a8=True,
per_channel_quant=True,
activation=layer.moe_runner_config.activation,
expert_map=layer.expert_map_gpu,
apply_router_weight_on_input=self.moe_runner_config.apply_router_weight_on_input,
global_num_experts=layer.moe_runner_config.num_experts,
w1_scale=(layer.w13_weight_scale),
w2_scale=(layer.w2_weight_scale),
a1_scale=layer.w13_input_scale,
a2_scale=layer.w2_input_scale,
use_nn_moe=False,
)
return StandardCombineInput(hidden_states=output)
# def _apply(
# self,
# layer: torch.nn.Module,
# x: torch.Tensor,
# router_logits: torch.Tensor,
# top_k: int,
# #renormalize: bool,
# #use_grouped_topk: bool = False,
# topk_group: Optional[int] = None,
# num_expert_group: Optional[int] = None,
# global_num_experts: int = -1,
# expert_map: Optional[torch.Tensor] = None,
# custom_routing_function: Optional[Callable] = None,
# scoring_func: str = "softmax",
# e_score_correction_bias: Optional[torch.Tensor] = None,
# apply_router_weight_on_input: bool = False,
# activation: str = "silu",
# enable_eplb: bool = False,
# use_nn_moe: Optional[bool] = False,
# routed_scaling_factor: Optional[float] = None,
# use_fused_gate: Optional[bool] = False,
# **_
# ) -> torch.Tensor:
# from sglang.srt.layers.moe.fused_moe_triton import (FusedMoE, FusedMoeWeightScaleSupported)
# from sglang.srt.layers.moe.fused_moe_triton.fused_moe import fused_experts
# if enable_eplb:
# raise NotImplementedError(
# "EPLB not supported for `SlimQuantW4A8Int8MarlinMoEMethod` yet.")
# # Expert selection
# topk_weights, topk_ids = FusedMoE.select_experts(
# hidden_states=x,
# router_logits=router_logits,
# #use_grouped_topk=use_grouped_topk,
# top_k=top_k,
# #renormalize=renormalize,
# topk_group=topk_group,
# num_expert_group=num_expert_group,
# custom_routing_function=custom_routing_function,
# scoring_func=scoring_func,
# e_score_correction_bias=e_score_correction_bias,
# routed_scaling_factor=routed_scaling_factor,
# use_fused_gate=use_fused_gate
# )
# workspace, global_reduce_buffer = MarlinMoeWorkspace(x.device).get_buffers()
# return fused_experts_impl_w4a8_marlin(
# x,
# layer.w13_weight,
# layer.w2_weight,
# topk_weights=topk_weights,
# topk_ids=topk_ids,
# workspace=workspace,
# global_reduce_buffer=global_reduce_buffer,
# inplace=True,
# use_int4_w4a8=True,
# per_channel_quant=True,
# activation=activation,
# expert_map=expert_map,
# apply_router_weight_on_input=apply_router_weight_on_input,
# global_num_experts=global_num_experts,
# w1_scale=(layer.w13_weight_scale),
# w2_scale=(layer.w2_weight_scale),
# a1_scale=layer.w13_input_scale,
# a2_scale=layer.w2_input_scale,
# use_nn_moe=use_nn_moe,
# )
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment