Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
b1a540ec
Unverified
Commit
b1a540ec
authored
Aug 28, 2024
by
Yineng Zhang
Committed by
GitHub
Aug 28, 2024
Browse files
feat: update GemmaRMSNorm (#1232)
parent
66975360
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
101 additions
and
53 deletions
+101
-53
python/sglang/srt/layers/layernorm.py
python/sglang/srt/layers/layernorm.py
+47
-1
python/sglang/srt/models/gemma2.py
python/sglang/srt/models/gemma2.py
+1
-51
python/sglang/test/test_layernorm.py
python/sglang/test/test_layernorm.py
+53
-1
No files found.
python/sglang/srt/layers/layernorm.py
View file @
b1a540ec
...
@@ -19,7 +19,12 @@ from typing import Optional, Tuple, Union
...
@@ -19,7 +19,12 @@ from typing import Optional, Tuple, Union
import
torch
import
torch
import
torch.nn
as
nn
import
torch.nn
as
nn
from
flashinfer.norm
import
fused_add_rmsnorm
,
rmsnorm
from
flashinfer.norm
import
(
fused_add_rmsnorm
,
gemma_fused_add_rmsnorm
,
gemma_rmsnorm
,
rmsnorm
,
)
from
vllm.model_executor.custom_op
import
CustomOp
from
vllm.model_executor.custom_op
import
CustomOp
...
@@ -63,3 +68,44 @@ class RMSNorm(CustomOp):
...
@@ -63,3 +68,44 @@ class RMSNorm(CustomOp):
return
x
return
x
else
:
else
:
return
x
,
residual
return
x
,
residual
class
GemmaRMSNorm
(
CustomOp
):
def
__init__
(
self
,
hidden_size
:
int
,
eps
:
float
=
1e-6
,
)
->
None
:
super
().
__init__
()
self
.
weight
=
nn
.
Parameter
(
torch
.
zeros
(
hidden_size
))
self
.
variance_epsilon
=
eps
def
forward_native
(
self
,
x
:
torch
.
Tensor
,
residual
:
Optional
[
torch
.
Tensor
]
=
None
,
)
->
Union
[
torch
.
Tensor
,
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]]:
orig_dtype
=
x
.
dtype
if
residual
is
not
None
:
x
=
x
+
residual
residual
=
x
x
=
x
.
float
()
variance
=
x
.
pow
(
2
).
mean
(
dim
=-
1
,
keepdim
=
True
)
x
=
x
*
torch
.
rsqrt
(
variance
+
self
.
variance_epsilon
)
x
=
x
*
(
1.0
+
self
.
weight
.
float
())
x
=
x
.
to
(
orig_dtype
)
return
x
if
residual
is
None
else
(
x
,
residual
)
def
forward_cuda
(
self
,
x
:
torch
.
Tensor
,
residual
:
Optional
[
torch
.
Tensor
]
=
None
,
)
->
Union
[
torch
.
Tensor
,
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]]:
if
residual
is
not
None
:
gemma_fused_add_rmsnorm
(
x
,
residual
,
self
.
weight
.
data
,
self
.
variance_epsilon
)
return
x
,
residual
out
=
gemma_rmsnorm
(
x
,
self
.
weight
.
data
,
self
.
variance_epsilon
)
return
out
python/sglang/srt/models/gemma2.py
View file @
b1a540ec
...
@@ -22,11 +22,6 @@ from torch import nn
...
@@ -22,11 +22,6 @@ from torch import nn
from
transformers
import
PretrainedConfig
from
transformers
import
PretrainedConfig
from
vllm.config
import
CacheConfig
,
LoRAConfig
from
vllm.config
import
CacheConfig
,
LoRAConfig
from
vllm.distributed
import
get_tensor_model_parallel_world_size
from
vllm.distributed
import
get_tensor_model_parallel_world_size
# FIXME: temporary solution, remove after next vllm release
from
vllm.model_executor.custom_op
import
CustomOp
# from vllm.model_executor.layers.layernorm import GemmaRMSNorm
from
vllm.model_executor.layers.linear
import
(
from
vllm.model_executor.layers.linear
import
(
MergedColumnParallelLinear
,
MergedColumnParallelLinear
,
QKVParallelLinear
,
QKVParallelLinear
,
...
@@ -39,6 +34,7 @@ from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmb
...
@@ -39,6 +34,7 @@ from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmb
from
vllm.model_executor.model_loader.weight_utils
import
default_weight_loader
from
vllm.model_executor.model_loader.weight_utils
import
default_weight_loader
from
sglang.srt.layers.activation
import
GeluAndMul
from
sglang.srt.layers.activation
import
GeluAndMul
from
sglang.srt.layers.layernorm
import
GemmaRMSNorm
from
sglang.srt.layers.logits_processor
import
LogitsProcessor
from
sglang.srt.layers.logits_processor
import
LogitsProcessor
from
sglang.srt.layers.radix_attention
import
RadixAttention
from
sglang.srt.layers.radix_attention
import
RadixAttention
from
sglang.srt.model_executor.forward_batch_info
import
InputMetadata
from
sglang.srt.model_executor.forward_batch_info
import
InputMetadata
...
@@ -50,52 +46,6 @@ def get_attention_sliding_window_size(config):
...
@@ -50,52 +46,6 @@ def get_attention_sliding_window_size(config):
return
config
.
sliding_window
-
1
return
config
.
sliding_window
-
1
class
GemmaRMSNorm
(
CustomOp
):
"""RMS normalization for Gemma.
Two differences from the above RMSNorm:
1. x * (1 + w) instead of x * w.
2. (x * w).to(orig_dtype) instead of x.to(orig_dtype) * w.
"""
def
__init__
(
self
,
hidden_size
:
int
,
eps
:
float
=
1e-6
,
)
->
None
:
super
().
__init__
()
self
.
weight
=
nn
.
Parameter
(
torch
.
zeros
(
hidden_size
))
self
.
variance_epsilon
=
eps
def
forward_native
(
self
,
x
:
torch
.
Tensor
,
residual
:
Optional
[
torch
.
Tensor
]
=
None
,
)
->
Union
[
torch
.
Tensor
,
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]]:
"""PyTorch-native implementation equivalent to forward()."""
orig_dtype
=
x
.
dtype
if
residual
is
not
None
:
x
=
x
+
residual
residual
=
x
x
=
x
.
float
()
variance
=
x
.
pow
(
2
).
mean
(
dim
=-
1
,
keepdim
=
True
)
x
=
x
*
torch
.
rsqrt
(
variance
+
self
.
variance_epsilon
)
# Llama does x.to(float16) * w whilst Gemma is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
x
=
x
*
(
1.0
+
self
.
weight
.
float
())
x
=
x
.
to
(
orig_dtype
)
return
x
if
residual
is
None
else
(
x
,
residual
)
def
forward_cuda
(
self
,
x
:
torch
.
Tensor
,
residual
:
Optional
[
torch
.
Tensor
]
=
None
,
)
->
Union
[
torch
.
Tensor
,
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]]:
# from vLLM: TODO(woosuk): Implement an optimized kernel for GemmaRMSNorm.
return
self
.
forward_native
(
x
,
residual
)
# FIXME: temporary solution, remove after next vllm release
# FIXME: temporary solution, remove after next vllm release
from
vllm.model_executor.layers.rotary_embedding
import
RotaryEmbedding
from
vllm.model_executor.layers.rotary_embedding
import
RotaryEmbedding
...
...
python/sglang/test/test_layernorm.py
View file @
b1a540ec
...
@@ -3,7 +3,7 @@ import unittest
...
@@ -3,7 +3,7 @@ import unittest
import
torch
import
torch
from
sglang.srt.layers.layernorm
import
RMSNorm
from
sglang.srt.layers.layernorm
import
GemmaRMSNorm
,
RMSNorm
class
TestRMSNorm
(
unittest
.
TestCase
):
class
TestRMSNorm
(
unittest
.
TestCase
):
...
@@ -56,5 +56,57 @@ class TestRMSNorm(unittest.TestCase):
...
@@ -56,5 +56,57 @@ class TestRMSNorm(unittest.TestCase):
self
.
_run_rms_norm_test
(
*
params
)
self
.
_run_rms_norm_test
(
*
params
)
class
TestGemmaRMSNorm
(
unittest
.
TestCase
):
DTYPES
=
[
torch
.
half
,
torch
.
bfloat16
]
NUM_TOKENS
=
[
7
,
83
,
4096
]
HIDDEN_SIZES
=
[
768
,
769
,
770
,
771
,
5120
,
5124
,
5125
,
5126
,
8192
,
8199
]
ADD_RESIDUAL
=
[
False
,
True
]
SEEDS
=
[
0
]
@
classmethod
def
setUpClass
(
cls
):
if
not
torch
.
cuda
.
is_available
():
raise
unittest
.
SkipTest
(
"CUDA is not available"
)
torch
.
set_default_device
(
"cuda"
)
def
_run_gemma_rms_norm_test
(
self
,
num_tokens
,
hidden_size
,
add_residual
,
dtype
,
seed
):
torch
.
manual_seed
(
seed
)
layer
=
GemmaRMSNorm
(
hidden_size
).
to
(
dtype
=
dtype
)
layer
.
weight
.
data
.
normal_
(
mean
=
1.0
,
std
=
0.1
)
scale
=
1
/
(
2
*
hidden_size
)
x
=
torch
.
randn
(
num_tokens
,
hidden_size
,
dtype
=
dtype
)
*
scale
residual
=
torch
.
randn_like
(
x
)
*
scale
if
add_residual
else
None
with
torch
.
inference_mode
():
ref_out
=
layer
.
forward_native
(
x
,
residual
)
out
=
layer
(
x
,
residual
)
if
add_residual
:
self
.
assertTrue
(
torch
.
allclose
(
out
[
0
],
ref_out
[
0
],
atol
=
1e-3
,
rtol
=
1e-3
))
self
.
assertTrue
(
torch
.
allclose
(
out
[
1
],
ref_out
[
1
],
atol
=
1e-3
,
rtol
=
1e-3
))
else
:
self
.
assertTrue
(
torch
.
allclose
(
out
,
ref_out
,
atol
=
1e-3
,
rtol
=
1e-3
))
def
test_gemma_rms_norm
(
self
):
for
params
in
itertools
.
product
(
self
.
NUM_TOKENS
,
self
.
HIDDEN_SIZES
,
self
.
ADD_RESIDUAL
,
self
.
DTYPES
,
self
.
SEEDS
,
):
with
self
.
subTest
(
num_tokens
=
params
[
0
],
hidden_size
=
params
[
1
],
add_residual
=
params
[
2
],
dtype
=
params
[
3
],
seed
=
params
[
4
],
):
self
.
_run_gemma_rms_norm_test
(
*
params
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
(
verbosity
=
2
)
unittest
.
main
(
verbosity
=
2
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment