Unverified Commit aba5ca15 authored by Yi Zhang's avatar Yi Zhang Committed by GitHub
Browse files

python transfer custom allreduce from trt kernel to vllm kernel (#5080)

parent 496dde84
......@@ -47,7 +47,7 @@ runtime_common = [
srt = [
"sglang[runtime_common]",
"sgl-kernel==0.0.7",
"sgl-kernel==0.0.8",
"flashinfer_python==0.2.3",
"torch==2.5.1",
"cuda-python",
......
......@@ -27,17 +27,20 @@ if not is_hpu():
logger.warning("Failed to import from custom_ar with %r", e)
if use_vllm_custom_allreduce and not is_hip():
# vLLM custom allreduce
if not is_hip():
if use_vllm_custom_allreduce:
custom_op = torch.ops._C_custom_ar
else:
custom_op = sgl_kernel.allreduce
# custom allreduce
def init_custom_ar(
ipc_tensors: List[torch.Tensor],
rank_data: torch.Tensor,
rank: int,
full_nvlink: bool,
) -> int:
return torch.ops._C_custom_ar.init_custom_ar(
ipc_tensors, rank_data, rank, full_nvlink
)
return custom_op.init_custom_ar(ipc_tensors, rank_data, rank, full_nvlink)
def all_reduce(
fa: int,
......@@ -46,105 +49,69 @@ if use_vllm_custom_allreduce and not is_hip():
reg_buffer: int,
reg_buffer_sz_bytes: int,
) -> None:
torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer, reg_buffer_sz_bytes)
custom_op.all_reduce(fa, inp, out, reg_buffer, reg_buffer_sz_bytes)
def dispose(fa: int) -> None:
torch.ops._C_custom_ar.dispose(fa)
custom_op.dispose(fa)
def meta_size() -> int:
return torch.ops._C_custom_ar.meta_size()
return custom_op.meta_size()
def register_buffer(fa: int, ipc_tensors: List[int]) -> None:
return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
return custom_op.register_buffer(fa, ipc_tensors)
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]:
return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
return custom_op.get_graph_buffer_ipc_meta(fa)
def register_graph_buffers(
fa: int, handles: List[List[int]], offsets: List[List[int]]
) -> None:
torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
custom_op.register_graph_buffers(fa, handles, offsets)
else:
if is_hip():
# ROCM custom allreduce
def init_custom_ar(
meta: torch.Tensor,
rank_data: torch.Tensor,
handles: List[str],
offsets: List[int],
rank: int,
full_nvlink: bool,
) -> int:
return sgl_kernel.allreduce.init_custom_ar(
meta, rank_data, handles, offsets, rank, full_nvlink
)
def all_reduce_reg(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None:
sgl_kernel.allreduce.all_reduce_reg(fa, inp, out)
def all_reduce_unreg(
fa: int, inp: torch.Tensor, reg_buffer: torch.Tensor, out: torch.Tensor
) -> None:
sgl_kernel.allreduce.all_reduce_unreg(fa, inp, reg_buffer, out)
def dispose(fa: int) -> None:
sgl_kernel.allreduce.dispose(fa)
def meta_size() -> int:
return sgl_kernel.allreduce.meta_size()
def register_buffer(
fa: int, t: torch.Tensor, handles: List[str], offsets: List[int]
) -> None:
return sgl_kernel.allreduce.register_buffer(fa, t, handles, offsets)
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[torch.Tensor, List[int]]:
return sgl_kernel.allreduce.get_graph_buffer_ipc_meta(fa)
def register_graph_buffers(
fa: int, handles: List[str], offsets: List[List[int]]
) -> None:
sgl_kernel.allreduce.register_graph_buffers(fa, handles, offsets)
def allocate_meta_buffer(size: int) -> torch.Tensor:
return sgl_kernel.allreduce.allocate_meta_buffer(size)
def get_meta_buffer_ipc_handle(inp: torch.Tensor) -> torch.Tensor:
return sgl_kernel.allreduce.get_meta_buffer_ipc_handle(inp)
# ROCM custom allreduce
else:
# TRTLLM custom allreduce
def init_custom_ar(
rank_id: int,
world_size: int,
rank_data_base: torch.Tensor,
buffers: List[int],
tmp_result_buffers: List[int],
barrier_in: List[int],
barrier_out: List[int],
) -> int:
return sgl_kernel.init_custom_reduce(
rank_id,
world_size,
rank_data_base,
buffers,
tmp_result_buffers,
barrier_in,
barrier_out,
)
def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None:
sgl_kernel.custom_reduce(fa, inp, out)
def dispose(fa: int) -> None:
sgl_kernel.custom_dispose(fa)
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]:
return sgl_kernel.get_graph_buffer_ipc_meta(fa)
def register_graph_buffers(
fa: int, handles: List[List[int]], offsets: List[List[int]]
) -> None:
sgl_kernel.register_graph_buffers(fa, handles, offsets)
def init_custom_ar(
meta: torch.Tensor,
rank_data: torch.Tensor,
handles: List[str],
offsets: List[int],
rank: int,
full_nvlink: bool,
) -> int:
return sgl_kernel.allreduce.init_custom_ar(
meta, rank_data, handles, offsets, rank, full_nvlink
)
def all_reduce_reg(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None:
sgl_kernel.allreduce.all_reduce_reg(fa, inp, out)
def all_reduce_unreg(
fa: int, inp: torch.Tensor, reg_buffer: torch.Tensor, out: torch.Tensor
) -> None:
sgl_kernel.allreduce.all_reduce_unreg(fa, inp, reg_buffer, out)
def dispose(fa: int) -> None:
sgl_kernel.allreduce.dispose(fa)
def meta_size() -> int:
return sgl_kernel.allreduce.meta_size()
def register_buffer(
fa: int, t: torch.Tensor, handles: List[str], offsets: List[int]
) -> None:
return sgl_kernel.allreduce.register_buffer(fa, t, handles, offsets)
def get_graph_buffer_ipc_meta(fa: int) -> Tuple[torch.Tensor, List[int]]:
return sgl_kernel.allreduce.get_graph_buffer_ipc_meta(fa)
def register_graph_buffers(
fa: int, handles: List[str], offsets: List[List[int]]
) -> None:
sgl_kernel.allreduce.register_graph_buffers(fa, handles, offsets)
def allocate_meta_buffer(size: int) -> torch.Tensor:
return sgl_kernel.allreduce.allocate_meta_buffer(size)
def get_meta_buffer_ipc_handle(inp: torch.Tensor) -> torch.Tensor:
return sgl_kernel.allreduce.get_meta_buffer_ipc_handle(inp)
......@@ -257,7 +257,7 @@ class CustomAllreduce:
self.world_size = world_size
self.full_nvlink = full_nvlink
if ops.use_vllm_custom_allreduce and not _is_hip:
if not _is_hip:
# Buffers memory are owned by this Python class and passed to C++.
# Meta data composes of two parts: meta data for synchronization and a
# temporary buffer for storing intermediate allreduce results.
......@@ -280,56 +280,24 @@ class CustomAllreduce:
)
ops.register_buffer(self._ptr, self.buffer_ptrs)
else:
if _is_hip:
# meta data buffers need to be "uncached" for signal on MI200
self.meta = ops.allocate_meta_buffer(ops.meta_size() + max_size)
self.buffer = torch.empty(
max_size, dtype=torch.uint8, device=self.device
)
handle = ops.get_meta_buffer_ipc_handle(self.meta)
shard_data = (
bytes(handle), # ipc handle to base ptr
0, # offset of base ptr
)
handles, offsets = self._gather_ipc_meta(shard_data)
self.rank_data = torch.empty(
8 * 1024 * 1024, dtype=torch.uint8, device=self.device
)
self._ptr = ops.init_custom_ar(
self.meta, self.rank_data, handles, offsets, rank, self.full_nvlink
)
self.register_buffer(self.buffer)
self.MSCCL = os.getenv("RCCL_MSCCL_ENABLE", "1") == "1"
else:
# From TensorRT-LLM getMaxRequiredWorkspaceSize
self.max_required_workspace_size = [16 * 1024 * 1024, 8 * 1024 * 1024]
# sizeof(uint32_t) * (MAX_ALL_REDUCE_BLOCKS + 2) * MAX_RANKS_PER_NODE;
self.barrier_max_size = 8 * (36 + 2) * 8
self.buffer_ptrs = self.create_shared_buffer(max_size, group=group)
self.tmp_result_buffer_ptrs = self.create_shared_buffer(
max_size, group=group
)
self.rank_data_base = torch.empty(
8 * 1024 * 1024, dtype=torch.uint8, device=self.device
)
self.barrier_in_ptrs = self.create_shared_buffer(
self.barrier_max_size, group=group
)
self.barrier_out_ptrs = self.create_shared_buffer(
self.barrier_max_size, group=group
)
# meta data buffers need to be "uncached" for signal on MI200
self.meta = ops.allocate_meta_buffer(ops.meta_size() + max_size)
self.buffer = torch.empty(max_size, dtype=torch.uint8, device=self.device)
handle = ops.get_meta_buffer_ipc_handle(self.meta)
shard_data = (
bytes(handle), # ipc handle to base ptr
0, # offset of base ptr
)
handles, offsets = self._gather_ipc_meta(shard_data)
self.rank_data = torch.empty(
8 * 1024 * 1024, dtype=torch.uint8, device=self.device
)
self._ptr = ops.init_custom_ar(
self.meta, self.rank_data, handles, offsets, rank, self.full_nvlink
)
self.register_buffer(self.buffer)
self.MSCCL = os.getenv("RCCL_MSCCL_ENABLE", "1") == "1"
self._ptr = ops.init_custom_ar(
rank,
world_size,
self.rank_data_base,
self.buffer_ptrs,
self.tmp_result_buffer_ptrs,
self.barrier_in_ptrs,
self.barrier_out_ptrs,
)
self.disabled = False
@staticmethod
......@@ -455,7 +423,7 @@ class CustomAllreduce:
return False
# for 4 or more non NVLink-capable GPUs, custom allreduce provides
# little performance improvement over NCCL.
if ops.use_vllm_custom_allreduce and not _is_hip:
if not _is_hip:
if self.world_size == 2 or self.full_nvlink:
return inp_size < self.max_size
return False
......@@ -471,18 +439,6 @@ class CustomAllreduce:
return inp_size < self.max_size
return False
if self.world_size == 2:
return (
inp_size < self.max_size
and inp_size < self.max_required_workspace_size[0]
)
if self.full_nvlink:
return (
inp_size < self.max_size
and inp_size < self.max_required_workspace_size[1]
)
return False
# all reduce, assuming inp tensor is IPC registered with register_buffer,
......@@ -515,15 +471,12 @@ class CustomAllreduce:
"""
if out is None:
out = torch.empty_like(inp)
if ops.use_vllm_custom_allreduce:
if registered:
ops.all_reduce(self._ptr, inp, out, 0, 0)
else:
ops.all_reduce(
self._ptr, inp, out, self.buffer_ptrs[self.rank], self.max_size
)
if registered:
ops.all_reduce(self._ptr, inp, out, 0, 0)
else:
ops.all_reduce(self._ptr, inp, out)
ops.all_reduce(
self._ptr, inp, out, self.buffer_ptrs[self.rank], self.max_size
)
return out
def custom_all_reduce(self, input: torch.Tensor) -> Optional[torch.Tensor]:
......@@ -554,14 +507,9 @@ class CustomAllreduce:
def close(self):
if not self.disabled and self._ptr:
ops.dispose(self._ptr)
if ops.use_vllm_custom_allreduce:
if _is_cuda:
self.free_shared_buffer(self.meta_ptrs)
self.free_shared_buffer(self.buffer_ptrs)
elif _is_cuda:
self.free_shared_buffer(self.buffer_ptrs)
self.free_shared_buffer(self.tmp_result_buffer_ptrs)
self.free_shared_buffer(self.barrier_in_ptrs)
self.free_shared_buffer(self.barrier_out_ptrs)
self._ptr = 0
def __del__(self):
......
......@@ -20,7 +20,7 @@ pip install --upgrade pip
# Install flashinfer and sgl-kernel
pip install flashinfer_python==0.2.3 --find-links ${FLASHINFER_REPO} --no-cache-dir
pip install sgl-kernel==0.0.7 --no-cache-dir
pip install sgl-kernel==0.0.8 --no-cache-dir
# Install the main package
pip install -e "python[all]" --find-links ${FLASHINFER_REPO}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment