Unverified Commit a3ab768a authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Clean up custom allreduce (#4029)

parent 66301e12
# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/_custom_ops.py
import contextlib
import functools
import importlib
import logging
import os
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
from typing import List, Tuple
import torch
import torch.library
......@@ -13,8 +10,9 @@ from sglang.srt.utils import is_hip, is_hpu
logger = logging.getLogger(__name__)
use_vllm_custom_allreduce = os.environ.get("USE_VLLM_CUSTOM_ALLREDUCE", default=True)
if not is_hpu():
# Remove vllm dependency for custom allreduce on ROCm
# ROCm does not use vllm custom allreduce
if use_vllm_custom_allreduce and not is_hip():
try:
import vllm._C
......@@ -27,37 +25,8 @@ if not is_hpu():
logger.warning("Failed to import from custom_ar with %r", e)
def hint_on_error(fn):
@functools.wraps(fn)
def wrapper(*args, **kwargs):
try:
return fn(*args, **kwargs)
except NotImplementedError as e:
msg = (
"Error in calling custom op %s: %s\n"
"Not implemented or built, mostly likely because the current current device "
"does not support this kernel (less likely TORCH_CUDA_ARCH_LIST was set "
"incorrectly while building)"
)
logger.error(msg, fn.__name__, e)
raise NotImplementedError(msg % (fn.__name__, e)) from e
except AttributeError as e:
msg = (
"Error in calling custom op %s: %s\n"
"Possibly you have built or installed an obsolete version of vllm.\n"
"Please try a clean build and install of vllm,"
"or remove old built files such as vllm/*cpython*.so and build/ ."
)
logger.error(msg, fn.__name__, e)
raise e
return wrapper
if use_vllm_custom_allreduce and not is_hip():
# custom ar
# vLLM custom allreduce
def init_custom_ar(
ipc_tensors: List[torch.Tensor],
rank_data: torch.Tensor,
......@@ -96,6 +65,7 @@ if use_vllm_custom_allreduce and not is_hip():
else:
if is_hip():
# ROCM custom allreduce
def init_custom_ar(
meta: torch.Tensor,
......@@ -143,7 +113,7 @@ else:
return sgl_kernel.ops.get_meta_buffer_ipc_handle(inp)
else:
# custom ar
# TRTLLM custom allreduce
def init_custom_ar(
rank_id: int,
world_size: int,
......@@ -176,29 +146,3 @@ else:
fa: int, handles: List[List[int]], offsets: List[List[int]]
) -> None:
sgl_kernel.ops.register_graph_buffers(fa, handles, offsets)
# temporary fix for https://github.com/vllm-project/vllm/issues/5456
# TODO: remove this in v0.6.0
names_and_values = globals()
names_and_values_to_update = {}
# prepare variables to avoid dict size change during iteration
k, v, arg = None, None, None
fn_type = type(lambda x: x)
for k, v in names_and_values.items():
# find functions that are defined in this file and have torch.Tensor
# in their annotations. `arg == "torch.Tensor"` is used to handle
# the case when users use `import __annotations__` to turn type
# hints into strings.
if (
isinstance(v, fn_type)
and v.__code__.co_filename == __file__
and any(
arg is torch.Tensor or arg == "torch.Tensor"
for arg in v.__annotations__.values()
)
):
names_and_values_to_update[k] = hint_on_error(v)
names_and_values.update(names_and_values_to_update)
del names_and_values_to_update, names_and_values, v, k, fn_type
......@@ -22,17 +22,18 @@ from sglang.srt.utils import cuda_device_count_stateless, is_cuda, is_hip
logger = logging.getLogger(__name__)
is_hip_ = is_hip()
if is_cuda():
try:
import pynvml
except ImportError as e:
logger.warning("Failed to import pynvml with %r", e)
if is_hip():
if is_hip_:
try:
from amdsmi import (
AmdSmiException,
amdsmi_get_gpu_board_info,
amdsmi_get_processor_handles,
amdsmi_init,
amdsmi_shut_down,
......@@ -42,9 +43,11 @@ if is_hip():
logger.warning("Failed to import amdsmi with %r", e)
try:
if ops.use_vllm_custom_allreduce and not is_hip():
if ops.use_vllm_custom_allreduce and not is_hip_:
# Use vLLM custom allreduce
ops.meta_size()
else:
# Use custom allreduce from sgl kernel (ROCM and TRT-LLM)
import sgl_kernel
custom_ar = True
except Exception:
......@@ -60,7 +63,7 @@ _R = TypeVar("_R")
def with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]:
@wraps(fn)
def wrapper(*args: _P.args, **kwargs: _P.kwargs) -> _R:
if torch.version.hip:
if is_hip_:
try:
amdsmi_init()
return fn(*args, **kwargs)
......@@ -78,7 +81,7 @@ def with_nvml_context(fn: Callable[_P, _R]) -> Callable[_P, _R]:
@with_nvml_context
def is_full_nvlink(physical_device_ids: List[int], world_size: int) -> bool:
if is_hip():
if is_hip_:
"""
query if the set of gpus are fully connected by xgmi (1 hop)
"""
......@@ -142,7 +145,7 @@ def is_weak_contiguous(inp: torch.Tensor):
class CustomAllreduce:
_SUPPORTED_WORLD_SIZES = [2, 4, 6, 8]
_MAX_CAR_SIZE = 8192 * 1024
if is_hip():
if is_hip_:
# crossover is at 16MB buffer size for ROCm
_MAX_CAR_SIZE = 2 * 8192 * 1024
......@@ -226,7 +229,7 @@ class CustomAllreduce:
# test nvlink first, this will filter out most of the cases
# where custom allreduce is not supported
# this checks hardware and driver support for NVLink
if is_cuda() or is_hip():
if is_cuda() or is_hip_:
full_nvlink = is_full_nvlink(physical_device_ids, world_size)
if world_size > 2 and not full_nvlink:
......@@ -240,7 +243,7 @@ class CustomAllreduce:
# this is expensive to compute at the first time
# then we cache the result
# On AMD GPU, p2p is always enabled between XGMI connected GPUs
if not is_hip() and not _can_p2p(rank, world_size):
if not is_hip_ and not _can_p2p(rank, world_size):
logger.warning(
"Custom allreduce is disabled because your platform lacks "
"GPU P2P capability or P2P test failed. To silence this "
......@@ -253,7 +256,7 @@ class CustomAllreduce:
self.world_size = world_size
self.full_nvlink = full_nvlink
if ops.use_vllm_custom_allreduce and not is_hip():
if ops.use_vllm_custom_allreduce and not is_hip_:
# Buffers memory are owned by this Python class and passed to C++.
# Meta data composes of two parts: meta data for synchronization and a
# temporary buffer for storing intermediate allreduce results.
......@@ -276,7 +279,7 @@ class CustomAllreduce:
)
ops.register_buffer(self._ptr, self.buffer_ptrs)
else:
if is_hip():
if is_hip_:
# meta data buffers need to be "uncached" for signal on MI200
self.meta = ops.allocate_meta_buffer(ops.meta_size() + max_size)
self.buffer = torch.empty(
......@@ -415,7 +418,7 @@ class CustomAllreduce:
ops.register_buffer(self._ptr, inp, handles, offsets)
def register_graph_buffers(self):
if is_hip():
if is_hip_:
handle, offset = ops.get_graph_buffer_ipc_meta(self._ptr)
handles, offsets = self._gather_ipc_meta((bytes(handle), offset))
logger.info("Registering %d cuda graph addresses", len(offset))
......@@ -451,12 +454,12 @@ class CustomAllreduce:
return False
# for 4 or more non NVLink-capable GPUs, custom allreduce provides
# little performance improvement over NCCL.
if ops.use_vllm_custom_allreduce and not is_hip():
if ops.use_vllm_custom_allreduce and not is_hip_:
if self.world_size == 2 or self.full_nvlink:
return inp_size < self.max_size
return False
if is_hip():
if is_hip_:
if self.full_nvlink:
if self.world_size == 8:
if self.MSCCL:
......@@ -529,7 +532,7 @@ class CustomAllreduce:
return None
if self._IS_CAPTURING:
if torch.cuda.is_current_stream_capturing():
if is_hip():
if is_hip_:
return self.all_reduce_reg(input)
else:
return self.all_reduce(input, registered=True)
......@@ -538,7 +541,7 @@ class CustomAllreduce:
# allreduce is out-of-place.
return torch.empty_like(input)
else:
if is_hip():
if is_hip_:
# note: outside of cuda graph context,
# custom allreduce incurs a cost of cudaMemcpy, which should
# be small(<=1% of overall latency) compared to the performance
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment