Unverified Commit a1c1ebe9 authored by Yuhong Guo's avatar Yuhong Guo Committed by GitHub
Browse files

Fix FP8 KV Cache Support in FA3 Backend (#7148)

parent fe2a0f96
......@@ -657,12 +657,16 @@ class FlashAttentionBackend(AttentionBackend):
)
k_descale, v_descale = None, None
# only use kv scaling if: 1) fp8 kv is explicitly enabled, 2) RadixAttention
# has corresponding quantization method so that layer.k_scale is not None
if self.kv_cache_dtype_str != "auto" and layer.k_scale is not None:
descale_shape = (forward_batch.batch_size, layer.tp_k_head_num)
k_descale = layer.k_scale.expand(descale_shape)
v_descale = layer.v_scale.expand(descale_shape)
# has corresponding quantization method so that layer.k_scale is not None,
# 3) layer.head_dim <= 256 since fa3 kernel require fp16 and bf16 data type in this case.
if self.kv_cache_dtype_str != "auto" and layer.head_dim <= 256:
if layer.k_scale is not None:
descale_shape = (forward_batch.batch_size, layer.tp_k_head_num)
k_descale = layer.k_scale.expand(descale_shape)
v_descale = layer.v_scale.expand(descale_shape)
q = q.to(self.kv_cache_dtype)
q_rope = q_rope.to(self.kv_cache_dtype) if q_rope is not None else None
k_rope = k_rope.to(self.kv_cache_dtype) if k_rope is not None else None
causal = not layer.is_cross_attention
# Check if we should use local attention
......@@ -776,8 +780,8 @@ class FlashAttentionBackend(AttentionBackend):
output, lse, *rest = flash_attn_varlen_func(
q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).to(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).to(q.dtype),
cu_seqlens_q=metadata.cu_seqlens_q,
cu_seqlens_k=forward_batch.prefix_chunk_cu_seq_lens[chunk_idx],
max_seqlen_q=metadata.max_seq_len_q,
......@@ -790,8 +794,8 @@ class FlashAttentionBackend(AttentionBackend):
# MHA for extend part of sequence without attending prefix kv cache
output, lse, *rest = flash_attn_varlen_func(
q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).to(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).to(q.dtype),
cu_seqlens_q=metadata.cu_seqlens_q,
cu_seqlens_k=metadata.cu_seqlens_q,
max_seqlen_q=metadata.max_seq_len_q,
......@@ -803,7 +807,9 @@ class FlashAttentionBackend(AttentionBackend):
return output, lse
else:
# Do absorbed multi-latent attention
kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(
layer.layer_id
).to(q.dtype)
k_rope = kv_cache[:, :, layer.v_head_dim :]
c_kv = kv_cache[:, :, : layer.v_head_dim]
k_rope_cache = k_rope.view(
......@@ -933,14 +939,16 @@ class FlashAttentionBackend(AttentionBackend):
k_descale, v_descale = None, None
# only use kv scaling if: 1) fp8 kv is explicitly enabled, 2) RadixAttention
# has corresponding quantization method so that layer.k_scale is not None
if self.kv_cache_dtype_str != "auto":
# has corresponding quantization method so that layer.k_scale is not None,
# 3) layer.head_dim <= 256 since fa3 kernel require fp16 and bf16 data type in this case.
if self.kv_cache_dtype_str != "auto" and layer.head_dim <= 256:
if layer.k_scale is not None:
descale_shape = (forward_batch.batch_size, layer.tp_k_head_num)
k_descale = layer.k_scale.expand(descale_shape)
v_descale = layer.v_scale.expand(descale_shape)
q = q.to(self.kv_cache_dtype)
q_rope = q_rope.to(self.kv_cache_dtype) if q_rope is not None else None
k_rope = k_rope.to(self.kv_cache_dtype) if k_rope is not None else None
if not self.use_mla:
# Do multi-head attention
......@@ -1048,7 +1056,9 @@ class FlashAttentionBackend(AttentionBackend):
o = result
else:
# Do absorbed multi-latent attention
kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id)
kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id).to(
q.dtype
)
k_rope = kv_cache[:, :, layer.v_head_dim :]
c_kv = kv_cache[:, :, : layer.v_head_dim]
k_rope_cache = k_rope.view(
......
......@@ -239,7 +239,7 @@ class ModelRunner:
"SGLANG_LOG_EXPERT_LOCATION_METADATA"
):
logger.info(
f"Initial expert_location_metadata: {get_global_expert_location_metadata().debug_str()}"
f"Initial expert_location_metadata: {get_global_expert_location_metadata()}"
)
set_global_expert_distribution_recorder(
......@@ -866,7 +866,9 @@ class ModelRunner:
else:
self.kv_cache_dtype = torch.float8_e5m2
elif self.server_args.kv_cache_dtype == "fp8_e4m3":
if is_cuda():
if _is_hip: # Using natively supported format
self.kv_cache_dtype = torch.float8_e4m3fnuz
else:
self.kv_cache_dtype = torch.float8_e4m3fn
else:
raise ValueError(
......
......@@ -4,7 +4,7 @@ from types import SimpleNamespace
import requests
import torch
from sglang.srt.utils import kill_process_tree
from sglang.srt.utils import is_cuda, is_hip, kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.test_utils import (
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
......@@ -20,7 +20,7 @@ class TestMLADeepseekV3(CustomTestCase):
cls.model = "lmsys/sglang-ci-dsv3-test"
cls.base_url = DEFAULT_URL_FOR_TEST
other_args = ["--trust-remote-code", "--chunked-prefill-size", "256"]
if torch.cuda.is_available() and torch.version.cuda:
if is_cuda():
other_args.extend(["--enable-torch-compile", "--cuda-graph-max-bs", "2"])
cls.process = popen_launch_server(
cls.model,
......@@ -49,6 +49,48 @@ class TestMLADeepseekV3(CustomTestCase):
self.assertGreater(metrics["accuracy"], 0.62)
@unittest.skipIf(is_hip(), "FA is not available.")
class TestMLADeepseekV3Fa3Fp8Kvcache(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = "lmsys/sglang-ci-dsv3-test"
cls.base_url = DEFAULT_URL_FOR_TEST
other_args = [
"--trust-remote-code",
"--chunked-prefill-size",
"256",
"--kv-cache-dtype",
"fp8_e4m3",
]
if is_cuda():
other_args.extend(["--attention-backend", "fa3"])
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=other_args,
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_gsm8k(self):
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval_few_shot_gsm8k(args)
print(metrics)
self.assertGreater(metrics["accuracy"], 0.62)
class TestDeepseekV3MTP(CustomTestCase):
@classmethod
def setUpClass(cls):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment