Commit a1175a4e authored by maxiao1's avatar maxiao1
Browse files

Merge remote-tracking branch 'origin/v0.5.4_dev' into sglang_v0.5.5

parents 0c006b88 31653dd9
......@@ -848,10 +848,12 @@ class BenchmarkMetrics:
mean_ttft_ms: float
median_ttft_ms: float
std_ttft_ms: float
p95_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
std_tpot_ms: float
p95_tpot_ms: float
p99_tpot_ms: float
mean_itl_ms: float
median_itl_ms: float
......@@ -1721,10 +1723,12 @@ def calculate_metrics(
* 1000, # ttfts is empty if streaming is not supported by backend
median_ttft_ms=np.median(ttfts or 0) * 1000,
std_ttft_ms=np.std(ttfts or 0) * 1000,
p95_ttft_ms=np.percentile(ttfts or 0, 95) * 1000,
p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
mean_tpot_ms=np.mean(tpots or 0) * 1000,
median_tpot_ms=np.median(tpots or 0) * 1000,
std_tpot_ms=np.std(tpots or 0) * 1000,
p95_tpot_ms=np.percentile(tpots or 0, 95) * 1000,
p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
mean_itl_ms=np.mean(itls or 0) * 1000,
median_itl_ms=np.median(itls or 0) * 1000,
......@@ -2052,6 +2056,12 @@ async def benchmark(
print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms))
print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
print("{:<40} {:<10.2f}".format("P95 TTFT (ms):", metrics.p95_ttft_ms))
print("{s:{c}^{n}}".format(s="Time per Output Token (excl. 1st token)", n=50, c="-"))
print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
print("{:<40} {:<10.2f}".format("Median TPOT (ms):", metrics.median_tpot_ms))
print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
print("{:<40} {:<10.2f}".format("P95 TPOT (ms):", metrics.p95_tpot_ms))
print("{s:{c}^{n}}".format(s="Inter-Token Latency", n=50, c="-"))
print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
......
......@@ -4,10 +4,24 @@ from typing import List, Optional, Tuple
import torch
from sglang.srt.utils import is_hip, is_hpu, is_npu
from sglang.srt.utils import get_bool_env_var, is_hip, is_hpu, is_npu
try:
from lmslim import quant_ops
from lmslim import quant_tools
except Exception:
print("INFO: Please install lmslim if you want to infer gptq or awq or w8a8 model.\n")
try:
import lightop
except Exception:
print("INFO: Please install lightop if you want to infer awq of marlin.\n")
logger = logging.getLogger(__name__)
use_vllm_custom_allreduce = get_bool_env_var(
"USE_VLLM_CUSTOM_ALLREDUCE", default="false"
)
use_dcu_custom_allreduce = get_bool_env_var(
"USE_DCU_CUSTOM_ALLREDUCE", default="true"
)
if not is_hpu():
try:
......@@ -15,6 +29,11 @@ if not is_hpu():
except ImportError as e:
logger.warning("Failed to import from custom_ar with %r", e)
if use_dcu_custom_allreduce:
try:
import vllm._C
except ImportError as e:
logger.warning("Failed to import from vllm._C with %r", e)
if not is_hip() and not is_npu():
custom_op = sgl_kernel.allreduce
......@@ -54,8 +73,79 @@ if not is_hip() and not is_npu():
) -> None:
custom_op.register_graph_buffers(fa, handles, offsets)
elif is_hip and use_dcu_custom_allreduce:
# custom ar
def init_custom_ar(ipc_tensors: list[torch.Tensor], rank_data: torch.Tensor,
rank: int, fully_connected: bool) -> int:
return torch.ops._C_custom_ar.init_custom_ar(ipc_tensors, rank_data, rank,
fully_connected)
def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int,
reg_buffer_sz_bytes: int) -> None:
torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer,
reg_buffer_sz_bytes)
def dispose(fa: int) -> None:
torch.ops._C_custom_ar.dispose(fa)
def meta_size() -> int:
return torch.ops._C_custom_ar.meta_size()
def register_buffer(fa: int, ipc_tensors: list[int]) -> None:
return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors)
def get_graph_buffer_ipc_meta(fa: int) -> tuple[list[int], list[int]]:
return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa)
def register_graph_buffers(fa: int, handles: list[list[int]],
offsets: list[list[int]]) -> None:
torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets)
def allocate_shared_buffer_and_handle(size: int) -> tuple[int, torch.Tensor]:
return torch.ops._C_custom_ar.allocate_shared_buffer_and_handle(size)
def open_mem_handle(mem_handle: torch.Tensor):
return torch.ops._C_custom_ar.open_mem_handle(mem_handle)
def free_shared_buffer(ptr: int) -> None:
torch.ops._C_custom_ar.free_shared_buffer(ptr)
def read_cache(
keys: torch.Tensor,
values: torch.Tensor,
key_caches: list[torch.Tensor],
value_caches: list[torch.Tensor],
slot_mapping: torch.Tensor,
kv_cache_dtype: str
) -> None:
torch.ops._C_cache_ops.read_cache(keys, values, key_caches,
value_caches, slot_mapping,
kv_cache_dtype)
def write_cache_multi_layers(
keys: torch.Tensor,
values: torch.Tensor,
key_caches: list[torch.Tensor],
value_caches: list[torch.Tensor],
slot_mapping: torch.Tensor,
kv_cache_dtype: str
) -> None:
torch.ops._C_cache_ops.write_cache_multi_layers(keys, values, key_caches,
value_caches, slot_mapping,
kv_cache_dtype)
else:
# ROCM custom allreduce
# sgl_kernel ROCM custom allreduce
def init_custom_ar(
meta: torch.Tensor,
......@@ -163,3 +253,83 @@ def mscclpp_allreduce(
context: int, inp: torch.Tensor, out: torch.Tensor, nthreads: int, nblocks: int
) -> None:
return sgl_kernel.allreduce.mscclpp_allreduce(context, inp, out, nthreads, nblocks)
def triton_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
bias: Optional[torch.Tensor] = None,
best_config:Optional[list] = None) -> torch.Tensor:
return quant_ops.triton_scaled_mm(a, b,scale_a,scale_b,out_dtype,bias,best_config)
def cutlass_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
`cutlass_scaled_mm` implements a fused version of
`output = torch.mm((scale_a * a), (scale_b * b)).to(out_dtype)`
where scale_a * a and scale_b * b are implemented using numpy-style
broadcasting.
In order to support blockwise scaling like found in DeepSeek V3 we also
support extended "group" broadcast rules. We extend the numpy-style
broadcasting rules with the following rule:
"if the extent of a dimension in the source shape is between 1 and
corresponding extent in the target shape we repeat each element along
that dimension src_shape[dim] // target_shape[dim] times consecutively"
example if we have:
a = [[1, 2], and target_shape = (2, 4)
[3, 4]]
then we would expand a to:
a = [[1, 1, 2, 2],
[3, 3, 4, 4]]
currently we only support the case:
scale_a.shape * [1, 128] == a.shape
scale_b.shape * [128, 128] == b.shape
"""
assert (out_dtype is torch.bfloat16 or out_dtype is torch.float16)
assert bias is None or bias.shape[0] == b.shape[
1] and bias.dtype == out_dtype
# m = a.shape[0]
# n = b.shape[1]
# cutlass_compatible_b = (b.shape[0] % 16 == 0 and b.shape[1] % 16 == 0)
# if current_platform.is_rocm() or not cutlass_compatible_b:
# from vllm.model_executor.layers.quantization.compressed_tensors.triton_scaled_mm import ( # noqa
# triton_scaled_mm)
# return triton_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
# out = torch.empty((m, n), dtype=out_dtype, device=a.device)
# torch.ops._C.cutlass_scaled_mm(out, a, b, scale_a, scale_b, bias)
# return out
#return quant_ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias)
return quant_ops.rocblas_scaled_mm_nn(a, b, scale_a, scale_b, out_dtype, bias)
def rocblas_scaled_mm(a: torch.Tensor,
b: torch.Tensor,
scale_a: torch.Tensor,
scale_b: torch.Tensor,
out_dtype: torch.dtype,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
return quant_ops.rocblas_scaled_mm_nn(a, b, scale_a, scale_b, out_dtype, bias)
def triton_int8_gemm_helper(m: int,
n: int,
k: int,
per_token_act_quant: bool,
per_out_channel_weight_quant: bool,
use_bias: bool,
out_dtype: type[torch.dtype] = torch.float16,
device: str = "cuda:0",
best_config:Optional[list] = None,
repeat:Optional[int] = 2):
return quant_tools.triton_int8_gemm_helper(m,n,k,per_token_act_quant,per_out_channel_weight_quant,use_bias,out_dtype,device,best_config,repeat)
\ No newline at end of file
......@@ -635,7 +635,9 @@ class ModelConfig:
"petit_nvfp4",
"quark",
"mxfp4",
"auto-round",
"slimquant_w4a8_marlin",
"w8a8_int8",
"slimquant_marlin",
]
optimized_quantization_methods = [
"fp8",
......@@ -655,6 +657,8 @@ class ModelConfig:
"qoq",
"w4afp8",
"petit_nvfp4",
"slimquant_w4a8_marlin",
"slimquant_marlin",
]
compatible_quantization_methods = {
"modelopt_fp8": ["modelopt"],
......
......@@ -34,6 +34,21 @@ except ImportError:
_is_cuda = is_cuda()
_is_hip = is_hip()
try:
if ops.use_vllm_custom_allreduce and not _is_hip:
# Use vLLM custom allreduce
ops.meta_size()
elif ops.use_dcu_custom_allreduce:
ops.meta_size()
else:
# Use custom allreduce from sgl kernel (ROCM and TRT-LLM)
import sgl_kernel # noqa: F401
custom_ar = True
except Exception:
# For CPUs
custom_ar = False
logger = logging.getLogger(__name__)
......@@ -416,3 +431,274 @@ class CustomAllreduce:
def __del__(self):
self.close()
class DCUCustomAllreduce:
_SUPPORTED_WORLD_SIZES = [2, 4, 6, 8, 16]
# max_size: max supported allreduce size
def __init__(self,
group: ProcessGroup,
device: Union[int, str, torch.device],
max_size=8192 * 512) -> None:
"""
Args:
group: the process group to work on. If None, it will use the
default process group.
device: the device to bind the CustomAllreduce to. If None,
it will be bind to f"cuda:{local_rank}".
It is the caller's responsibility to make sure each communicator
is bind to a unique device, and all communicators in this group
are in the same node.
"""
self._IS_CAPTURING = False
self.disabled = True
if not custom_ar:
# disable because of missing custom allreduce library
# e.g. in a non-GPU environment
logger.info("Custom allreduce is disabled because "
"of missing custom allreduce library")
return
self.group = group
assert dist.get_backend(group) != dist.Backend.NCCL, (
"CustomAllreduce should be attached to a non-NCCL group.")
if not all(in_the_same_node_as(group, source_rank=0)):
# No need to initialize custom allreduce for multi-node case.
logger.warning(
"Custom allreduce is disabled because this process group"
" spans across nodes.")
return
rank = dist.get_rank(group=self.group)
self.rank = rank
world_size = dist.get_world_size(group=self.group)
# if world_size > envs.VLLM_CUSTOM_ALLREDUCE_SUPPORTED_WORLDSIZE_MAX:
if world_size > 16:
return
if world_size == 1:
# No need to initialize custom allreduce for single GPU case.
return
if world_size not in CustomAllreduce._SUPPORTED_WORLD_SIZES:
logger.warning(
"Custom allreduce is disabled due to an unsupported world"
" size: %d. Supported world sizes: %s. To silence this "
"warning, specify disable_custom_all_reduce=True explicitly.",
world_size, str(CustomAllreduce._SUPPORTED_WORLD_SIZES))
return
if isinstance(device, int):
device = torch.device(f"cuda:{device}")
elif isinstance(device, str):
device = torch.device(device)
# now `device` is a `torch.device` object
assert isinstance(device, torch.device)
self.device = device
cuda_visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES", None)
if cuda_visible_devices:
device_ids = list(map(int, cuda_visible_devices.split(",")))
else:
device_ids = list(range(torch.cuda.device_count()))
physical_device_id = device_ids[device.index]
tensor = torch.tensor([physical_device_id],
dtype=torch.int,
device="cpu")
gather_list = [
torch.tensor([0], dtype=torch.int, device="cpu")
for _ in range(world_size)
]
dist.all_gather(gather_list, tensor, group=self.group)
physical_device_ids = [t.item() for t in gather_list]
# test nvlink first, this will filter out most of the cases
# where custom allreduce is not supported
# this checks hardware and driver support for NVLink
# assert current_platform.is_cuda_alike()
# fully_connected = current_platform.is_fully_connected(
# physical_device_ids)
if _is_cuda or _is_hip:
fully_connected = is_full_nvlink(physical_device_ids, world_size)
# if world_size > 2 and not fully_connected:
if not fully_connected:
max_size = 32 * 8192 * 2
# if not envs.VLLM_PCIE_USE_CUSTOM_ALLREDUCE:
# logger.warning(
# "Custom allreduce is disabled because it's not supported on"
# " more than two PCIe-only GPUs. To silence this warning, "
# "specify disable_custom_all_reduce=True explicitly.")
# return
logger.warning(
"We are using PCIe's custom allreduce."
"If the performance is poor, we can add "
"--disable-custom-all-reduce in the instruction.")
# test P2P capability, this checks software/cudaruntime support
# this is expensive to compute at the first time
# then we cache the result
# On AMD GPU, p2p is always enabled between XGMI connected GPUs
if not _is_hip and not _can_p2p(rank, world_size):
logger.warning(
"Custom allreduce is disabled because your platform lacks "
"GPU P2P capability or P2P test failed. To silence this "
"warning, specify disable_custom_all_reduce=True explicitly.")
return
self.disabled = False
# Buffers memory are owned by this Python class and passed to C++.
# Meta data composes of two parts: meta data for synchronization and a
# temporary buffer for storing intermediate allreduce results.
self.meta_ptrs = self.create_shared_buffer(ops.meta_size() + max_size,
group=group,
uncached=True)
# This is a pre-registered IPC buffer. In eager mode, input tensors
# are first copied into this buffer before allreduce is performed
self.buffer_ptrs = self.create_shared_buffer(max_size, group=group)
# This is a buffer for storing the tuples of pointers pointing to
# IPC buffers from all ranks. Each registered tuple has size of
# 8*world_size bytes where world_size is at most 8. Allocating 8MB
# is enough for 131072 such tuples. The largest model I've seen only
# needs less than 10000 of registered tuples.
self.rank_data = torch.empty(8 * 1024 * 1024,
dtype=torch.uint8,
device=self.device)
self.max_size = max_size
self.rank = rank
self.world_size = world_size
self.fully_connected = fully_connected
self._ptr = ops.init_custom_ar(self.meta_ptrs, self.rank_data, rank,
self.fully_connected)
ops.register_buffer(self._ptr, self.buffer_ptrs)
@contextmanager
def capture(self):
"""
The main responsibility of this context manager is the
`register_graph_buffers` call at the end of the context.
It records all the buffer addresses used in the CUDA graph.
"""
try:
self._IS_CAPTURING = True
yield
finally:
self._IS_CAPTURING = False
if not self.disabled:
self.register_graph_buffers()
def register_graph_buffers(self):
handle, offset = ops.get_graph_buffer_ipc_meta(self._ptr)
logger.info("Registering %d cuda graph addresses", len(offset))
# We cannot directly use `dist.all_gather_object` here
# because it is incompatible with `gloo` backend under inference mode.
# see https://github.com/pytorch/pytorch/issues/126032 for details.
all_data = [[None, None]
for _ in range(dist.get_world_size(group=self.group))]
all_data[self.rank] = [handle, offset]
ranks = sorted(dist.get_process_group_ranks(group=self.group))
for i, rank in enumerate(ranks):
dist.broadcast_object_list(all_data[i],
src=rank,
group=self.group,
device="cpu")
# Unpack list of tuples to tuple of lists.
handles = [d[0] for d in all_data] # type: ignore
offsets = [d[1] for d in all_data] # type: ignore
ops.register_graph_buffers(self._ptr, handles, offsets)
def should_custom_ar(self, inp: torch.Tensor):
if self.disabled:
return False
inp_size = inp.numel() * inp.element_size()
# custom allreduce requires input byte size to be multiples of 16
if inp_size % 16 != 0:
return False
if not is_weak_contiguous(inp):
return False
# for 4 or more non NVLink-capable GPUs, custom allreduce provides
# little performance improvement over NCCL.
return inp_size <= self.max_size
def all_reduce(self,
inp: torch.Tensor,
*,
out: torch.Tensor = None,
registered: bool = False):
"""Performs an out-of-place all reduce.
If registered is True, this assumes inp's pointer is already
IPC-registered. Otherwise, inp is first copied into a pre-registered
buffer.
"""
if out is None:
out = torch.empty_like(inp)
if registered:
ops.all_reduce(self._ptr, inp, out, 0, 0)
else:
ops.all_reduce(self._ptr, inp, out, self.buffer_ptrs[self.rank],
self.max_size)
return out
def custom_all_reduce(self, input: torch.Tensor) -> Optional[torch.Tensor]:
"""The main allreduce API that provides support for cuda graph."""
# When custom allreduce is disabled, this will be None.
if self.disabled or not self.should_custom_ar(input):
return None
if self._IS_CAPTURING:
if torch.cuda.is_current_stream_capturing():
return self.all_reduce(input, registered=False)
else:
# If warm up, mimic the allocation pattern since custom
# allreduce is out-of-place.
return torch.empty_like(input)
else:
# Note: outside of cuda graph context, custom allreduce incurs a
# cost of cudaMemcpy, which should be small (<=1% of overall
# latency) compared to the performance gain of using custom kernels
return self.all_reduce(input, registered=False)
def close(self):
if not self.disabled and self._ptr:
if ops is not None:
ops.dispose(self._ptr)
self._ptr = 0
self.free_shared_buffer(self.meta_ptrs, rank=self.rank)
self.free_shared_buffer(self.buffer_ptrs, rank=self.rank)
def __del__(self):
self.close()
@staticmethod
def create_shared_buffer(size_in_bytes: int,
group: Optional[ProcessGroup] = None,
uncached: Optional[bool] = False) -> list[int]:
pointer, handle = ops.allocate_shared_buffer_and_handle(size_in_bytes)
world_size = dist.get_world_size(group=group)
rank = dist.get_rank(group=group)
handles = [None] * world_size
dist.all_gather_object(handles, handle, group=group)
pointers: list[int] = []
for i, h in enumerate(handles):
if i == rank:
pointers.append(pointer) # type: ignore
else:
pointers.append(ops.open_mem_handle(h))
return pointers
@staticmethod
def free_shared_buffer(pointers: list[int],
group: Optional[ProcessGroup] = None,
rank: Optional[int] = 0) -> None:
if rank is None:
rank = dist.get_rank(group=group)
if ops is not None:
ops.free_shared_buffer(pointers[rank])
......@@ -54,6 +54,7 @@ from sglang.srt.utils import (
is_xpu,
supports_custom_op,
)
from sglang.srt import _custom_ops as ops
_is_npu = is_npu()
_is_cpu = is_cpu()
......@@ -327,7 +328,7 @@ class GroupCoordinator:
# Lazy import to avoid documentation build error
from sglang.srt.distributed.device_communicators.custom_all_reduce import (
CustomAllreduce,
CustomAllreduce, DCUCustomAllreduce
)
from sglang.srt.distributed.device_communicators.pymscclpp import (
PyMscclppCommunicator,
......@@ -371,10 +372,17 @@ class GroupCoordinator:
if use_custom_allreduce and self.world_size > 1:
# Initialize a custom fast all-reduce implementation.
try:
self.ca_comm = CustomAllreduce(
group=self.cpu_group,
device=self.device,
)
if is_hip() and ops.use_dcu_custom_allreduce:
self.ca_comm = DCUCustomAllreduce(
group=self.cpu_group,
device=self.device,
)
else:
self.ca_comm = CustomAllreduce(
group=self.cpu_group,
device=self.device,
max_size=ca_max_size,
)
except Exception as e:
logger.warning(
f"Setup Custom allreduce failed with {e}. To silence this "
......
......@@ -188,6 +188,17 @@ class Envs:
SGLANG_USE_AITER = EnvBool(False)
SGLANG_ROCM_FUSED_DECODE_MLA = EnvBool(False)
SGLANG_ROCM_DISABLE_LINEARQUANT = EnvBool(False)
# DCU Lightop
SGLANG_USE_LIGHTOP = EnvBool(False)
# Fused
SGLANG_USE_LIGHTOP_MOE_SUM_MUL_ADD = EnvBool(False)
SGLANG_USE_OPT_CAT = EnvBool(False)
SGLANG_USE_FUSED_RMS_QUANT = EnvBool(False)
SGLANG_USE_FUSED_SILU_MUL_QUANT = EnvBool(False)
# Quantization
SGLANG_INT4_WEIGHT = EnvBool(False)
......
......@@ -99,7 +99,6 @@ def create_triton_backend(runner):
return TritonAttnBackend(runner)
@register_attention_backend("torch_native")
def create_torch_native_backend(runner):
from sglang.srt.layers.attention.torch_native_backend import TorchNativeAttnBackend
......@@ -120,6 +119,11 @@ def create_flashmla_backend(runner):
return FlashMLABackend(runner)
@register_attention_backend("dcu_mla")
def create_dcu_mla_backend(runner):
from sglang.srt.layers.attention.dcu_mla_backend import DCUMLABackend
return DCUMLABackend(runner)
@register_attention_backend("fa3")
def create_flashattention_v3_backend(runner):
......
This diff is collapsed.
......@@ -9,7 +9,8 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
# from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_varlen_func, flash_attn_with_kvcache
from sgl_kernel.sparse_flash_attn import (
convert_vertical_slash_indexes,
convert_vertical_slash_indexes_mergehead,
......
......@@ -20,7 +20,8 @@ if TYPE_CHECKING:
from sglang.srt.model_executor.model_runner import ModelRunner
from sgl_kernel import merge_state_v2
from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
# from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_varlen_func, flash_attn_with_kvcache
@dataclass
......@@ -328,6 +329,8 @@ class FlashAttentionBackend(AttentionBackend):
self.use_mla = model_runner.model_config.attention_arch == AttentionArch.MLA
self.skip_prefill = skip_prefill
self.is_hybrid = model_runner.is_hybrid
self.k_scale = torch.tensor([1.0], dtype=torch.float32, device=self.device)
self.v_scale = torch.tensor([1.0], dtype=torch.float32, device=self.device)
if self.is_hybrid:
self.full_to_swa_index_mapping = (
model_runner.token_to_kv_pool.full_to_swa_index_mapping
......@@ -596,9 +599,11 @@ class FlashAttentionBackend(AttentionBackend):
forward_batch.req_pool_indices, : metadata.max_seq_len_k
]
if any(
forward_batch.extend_prefix_lens_cpu
) or forward_batch.forward_mode.is_draft_extend(include_v2=True):
if (
any(forward_batch.extend_prefix_lens_cpu)
or forward_batch.forward_mode == ForwardMode.DRAFT_EXTEND
or forward_batch.forward_mode == ForwardMode.DRAFT_EXTEND_V2 #nhb
):
extend_seq_lens = forward_batch.extend_seq_lens
metadata.max_seq_len_q = max(forward_batch.extend_seq_lens_cpu)
metadata.cu_seqlens_q = torch.nn.functional.pad(
......@@ -608,10 +613,13 @@ class FlashAttentionBackend(AttentionBackend):
metadata.max_seq_len_q = metadata.max_seq_len_k
metadata.cu_seqlens_q = metadata.cu_seqlens_k
# Setup local attention if enabled
if forward_batch.forward_mode == ForwardMode.EXTEND:
# # Setup local attention if enabled
# if forward_batch.forward_mode == ForwardMode.EXTEND:
# self._init_local_attn_metadata(forward_batch, metadata, device)
if forward_batch.forward_mode in (ForwardMode.EXTEND, ForwardMode.DRAFT_EXTEND_V2):
self._init_local_attn_metadata(forward_batch, metadata, device)
# Encoder metadata for cross attention
if forward_batch.encoder_lens is not None:
assert (
......@@ -668,10 +676,11 @@ class FlashAttentionBackend(AttentionBackend):
if not layer.is_cross_attention
else forward_batch.encoder_out_cache_loc
)
if not self.use_mla:
if k_rope is None:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer, cache_loc, k, v, layer.k_scale, layer.v_scale
layer, cache_loc, k, v, #layer.k_scale, layer.v_scale
)
else:
forward_batch.token_to_kv_pool.set_mla_kv_buffer(
layer,
......@@ -690,7 +699,8 @@ class FlashAttentionBackend(AttentionBackend):
layer.sliding_window_size is not None and layer.sliding_window_size > -1
)
window_size = (layer.sliding_window_size, 0) if is_swa else (-1, -1)
k_descale, v_descale = None, None
# k_descale, v_descale = None, None
k_descale, v_descale = self.k_scale, self.v_scale
# only use kv scaling if: 1) fp8 kv is explicitly enabled, 2) RadixAttention
# has corresponding quantization method so that layer.k_scale is not None,
# 3) layer.head_dim <= 256 since fa3 kernel require fp16 and bf16 data type in this case,
......@@ -704,7 +714,7 @@ class FlashAttentionBackend(AttentionBackend):
descale_shape = (forward_batch.batch_size, layer.tp_k_head_num)
k_descale = layer.k_scale.expand(descale_shape)
v_descale = layer.v_scale.expand(descale_shape)
q = q.to(self.kv_cache_dtype)
# q = q.to(self.kv_cache_dtype)
q_rope = q_rope.to(self.kv_cache_dtype) if q_rope is not None else None
k_rope = k_rope.to(self.kv_cache_dtype) if k_rope is not None else None
causal = True
......@@ -774,61 +784,59 @@ class FlashAttentionBackend(AttentionBackend):
cu_seqlens_k = metadata.encoder_cu_seqlens_k
window_size = (-1, -1)
result = flash_attn_with_kvcache(
q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
k_cache=key_cache,
v_cache=value_cache,
page_table=page_table,
cache_seqlens=cache_seqlens,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k_new=cu_seqlens_k if not use_local_attn else None,
max_seqlen_q=max_seqlen_q,
softmax_scale=layer.scaling,
causal=False if use_cascade_attn else causal,
window_size=window_size,
softcap=layer.logit_cap,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=use_cascade_attn,
num_splits=self.num_splits,
**kwargs,
)
if use_cascade_attn:
o, softmax_lse, *rest = result
o_expand, softmax_lse_expand, *rest_expand = flash_attn_with_kvcache(
q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
k_cache=key_cache,
v_cache=value_cache,
page_table=self.forward_metadata_spec_decode_expand.page_table,
cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
if forward_batch.attn_attend_prefix_cache:
assert not get_global_server_args().disable_chunked_prefix_cache
# MHA for chunked prefix kv cache when running model with MLA
assert forward_batch.prefix_chunk_idx is not None
assert forward_batch.prefix_chunk_cu_seq_lens is not None
assert forward_batch.prefix_chunk_max_seq_lens is not None
chunk_idx = forward_batch.prefix_chunk_idx
assert chunk_idx >= 0
assert forward_batch.mha_return_lse
output = flash_attn_varlen_func(
q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).view(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).view(q.dtype),
cu_seqlens_q=metadata.cu_seqlens_q,
cu_seqlens_k=forward_batch.prefix_chunk_cu_seq_lens[chunk_idx],
max_seqlen_q=metadata.max_seq_len_q,
max_seqlen_k=forward_batch.prefix_chunk_max_seq_lens[chunk_idx],
softmax_scale=layer.scaling,
causal=False,
window_size=window_size,
softcap=layer.logit_cap,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=True,
num_splits=self.num_splits,
**kwargs,
)
o, _ = merge_state_v2_wrapper(
o,
softmax_lse.T.contiguous(),
o_expand,
softmax_lse_expand.T.contiguous(),
)
else:
o = result
output = flash_attn_varlen_func(
q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).view(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).view(q.dtype),
cu_seqlens_q=metadata.cu_seqlens_q,
cu_seqlens_k=metadata.cu_seqlens_q,
max_seqlen_q=metadata.max_seq_len_q,
max_seqlen_k=metadata.max_seq_len_q,
softmax_scale=layer.scaling,
causal=True,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=forward_batch.mha_return_lse,
**kwargs,
)
if forward_batch.mha_return_lse:
output, lse, *rest = output
lse = torch.transpose(lse, 0, 1).contiguous()
return output, lse
return output.view(-1, layer.tp_q_head_num * layer.v_head_dim)
else:
if (
forward_batch.attn_attend_prefix_cache is not None
and not forward_batch.forward_mode.is_target_verify()
and not forward_batch.forward_mode.is_draft_extend(include_v2=True)
):
and not forward_batch.forward_mode.is_draft_extend()
):
# Do multi-head attention with chunked prefix cache
if forward_batch.attn_attend_prefix_cache:
assert not get_global_server_args().disable_chunked_prefix_cache
......@@ -843,39 +851,32 @@ class FlashAttentionBackend(AttentionBackend):
assert forward_batch.mha_return_lse
output = flash_attn_varlen_func(
q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).to(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).to(q.dtype),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).view(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).view(q.dtype),
cu_seqlens_q=metadata.cu_seqlens_q,
cu_seqlens_k=forward_batch.prefix_chunk_cu_seq_lens[chunk_idx],
max_seqlen_q=metadata.max_seq_len_q,
max_seqlen_k=forward_batch.prefix_chunk_max_seq_lens[chunk_idx],
softmax_scale=layer.scaling,
causal=False,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=True,
**kwargs,
)
else:
# MHA for extend part of sequence without attending prefix kv cache
cu_seqlens_k = (
metadata.cu_seqlens_q
if not forward_batch.mha_one_shot
else metadata.cu_seqlens_k
)
max_seqlen_k = (
metadata.max_seq_len_q
if not forward_batch.mha_one_shot
else metadata.max_seq_len_k
)
output = flash_attn_varlen_func(
q=q.view(-1, layer.tp_q_head_num, layer.head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).to(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).to(q.dtype),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).view(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).view(q.dtype),
cu_seqlens_q=metadata.cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=metadata.max_seq_len_q,
max_seqlen_k=max_seqlen_k,
softmax_scale=layer.scaling,
causal=True,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=forward_batch.mha_return_lse,
**kwargs,
)
......@@ -985,10 +986,16 @@ class FlashAttentionBackend(AttentionBackend):
if not layer.is_cross_attention
else forward_batch.encoder_out_cache_loc
)
if not self.use_mla:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer, cache_loc, k, v, layer.k_scale, layer.v_scale
)
# if not self.use_mla:
if k_rope is None:
if not self.use_mla:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer, cache_loc, k, v, layer.k_scale, layer.v_scale
)
else:
forward_batch.token_to_kv_pool.set_kv_buffer(
layer, cache_loc, k, v
)
else:
forward_batch.token_to_kv_pool.set_mla_kv_buffer(
layer,
......@@ -1030,7 +1037,8 @@ class FlashAttentionBackend(AttentionBackend):
if sinks is not None:
kwargs["sinks"] = sinks
k_descale, v_descale = None, None
# k_descale, v_descale = None, None
k_descale, v_descale = self.k_scale, self.v_scale
# only use kv scaling if: 1) fp8 kv is explicitly enabled, 2) RadixAttention
# has corresponding quantization method so that layer.k_scale is not None,
# 3) layer.head_dim <= 256 since fa3 kernel require fp16 and bf16 data type in this case.
......@@ -1044,7 +1052,6 @@ class FlashAttentionBackend(AttentionBackend):
k_rope = k_rope.to(self.kv_cache_dtype) if k_rope is not None else None
if not self.use_mla:
# Do multi-head attention
key_cache, value_cache = forward_batch.token_to_kv_pool.get_kv_buffer(
layer.layer_id
)
......@@ -1096,65 +1103,62 @@ class FlashAttentionBackend(AttentionBackend):
**kwargs,
)
else:
cu_seqlens_q = metadata.cu_seqlens_q
max_seqlen_q = metadata.max_seq_len_q
page_table = metadata.page_table
cache_seqlens = metadata.cache_seqlens_int32
cu_seqlens_k = metadata.cu_seqlens_k
max_seqlen_q = metadata.max_seq_len_q
q_reshaped = q.contiguous().view(
-1, layer.tp_q_head_num, layer.head_dim
cache_seqlens = metadata.cache_seqlens_int32
key_cache = key_cache.view(
-1, self.page_size, layer.tp_k_head_num, layer.head_dim
)
# Default: single-token self-attention
result = flash_attn_with_kvcache(
q=q_reshaped,
k_cache=key_cache,
v_cache=value_cache,
page_table=page_table,
cache_seqlens=cache_seqlens,
cu_seqlens_q=metadata.cu_seqlens_q,
cu_seqlens_k_new=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
softmax_scale=layer.scaling,
causal=False if use_cascade_attn else causal,
window_size=window_size,
softcap=layer.logit_cap,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=use_cascade_attn,
num_splits=self.num_splits,
**kwargs,
value_cache = value_cache.view(
-1, self.page_size, layer.tp_v_head_num, layer.head_dim
)
if use_cascade_attn:
o, softmax_lse, *rest = result
o_expand, softmax_lse_expand, *rest_expand = (
flash_attn_with_kvcache(
q=q_reshaped,
k_cache=key_cache,
v_cache=value_cache,
page_table=self.forward_metadata_spec_decode_expand.page_table,
cache_seqlens=self.forward_metadata_spec_decode_expand.cache_seqlens_int32,
cu_seqlens_q=self.forward_metadata_spec_decode_expand.cu_seqlens_q,
cu_seqlens_k_new=self.forward_metadata_spec_decode_expand.cu_seqlens_k,
max_seqlen_q=self.forward_metadata_spec_decode_expand.max_seq_len_q,
softmax_scale=layer.scaling,
causal=False,
window_size=window_size,
softcap=layer.logit_cap,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=True,
num_splits=self.num_splits,
**kwargs,
)
)
o, _ = merge_state_v2(
o,
softmax_lse.T.contiguous(),
o_expand,
softmax_lse_expand.T.contiguous(),
if layer.is_cross_attention:
page_table = metadata.encoder_page_table
cache_seqlens = metadata.encoder_lens_int32
cu_seqlens_k = metadata.encoder_cu_seqlens_k
window_size = (-1, -1)
if max_seqlen_q > 1:
result = flash_attn_varlen_func(
q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
k=k.view(-1, layer.tp_k_head_num, layer.head_dim).view(q.dtype),
v=v.view(-1, layer.tp_k_head_num, layer.v_head_dim).view(q.dtype),
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_q,
softmax_scale=layer.scaling,
causal=True,
window_size=window_size,
softcap=layer.logit_cap,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=use_cascade_attn,
num_splits=self.num_splits,
**kwargs,
)
else:
o = result
result = flash_attn_with_kvcache(
q=q.contiguous().view(-1, layer.tp_q_head_num, layer.head_dim),
k_cache=key_cache,
v_cache=value_cache,
page_table=page_table,
cache_seqlens=cache_seqlens,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k_new=cu_seqlens_k if not use_local_attn else None,
max_seqlen_q=max_seqlen_q,
softmax_scale=layer.scaling,
causal=True,
window_size=window_size,
softcap=layer.logit_cap,
k_descale=k_descale,
v_descale=v_descale,
return_softmax_lse=use_cascade_attn,
num_splits=self.num_splits,
**kwargs,
)
o = result
else:
# Do absorbed multi-latent attention
kv_cache = forward_batch.token_to_kv_pool.get_key_buffer(layer.layer_id).to(
......
from flash_attn import (
flash_attn_varlen_func as flash_attn_varlen_func_interface,
flash_attn_with_kvcache as flash_attn_with_kvcache_interface
)
from typing import Optional, Union
import torch
def flash_attn_with_kvcache(
q,
k_cache,
v_cache,
k=None,
v=None,
qv=None,
rotary_cos=None,
rotary_sin=None,
cache_seqlens: Optional[Union[int, torch.Tensor]] = None,
cache_batch_idx: Optional[torch.Tensor] = None,
cache_leftpad: Optional[torch.Tensor] = None,
page_table: Optional[torch.Tensor] = None,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_k_new: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
rotary_seqlens: Optional[torch.Tensor] = None,
q_descale: Optional[torch.Tensor] = None,
k_descale: Optional[torch.Tensor] = None,
v_descale: Optional[torch.Tensor] = None,
softmax_scale=None,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
attention_chunk: Optional[int] = None,
softcap=0.0, # 0.0 means deactivated
rotary_interleaved=True,
scheduler_metadata=None,
num_splits=0, # Can be tuned for speed
pack_gqa=None, # Can be tuned for speed
sm_margin=0, # Can be tuned if some SMs are used for communication
return_softmax_lse=False,
sinks=None,
ver=3,
):
return flash_attn_with_kvcache_interface(
q=q.contiguous().view(-1, max_seqlen_q, q.shape[-2], q.shape[-1]),
k_cache=k_cache.view(q.dtype),
v_cache=v_cache.view(q.dtype),
block_table=page_table,
cache_seqlens=cache_seqlens,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
softcap=softcap,
return_softmax_lse=return_softmax_lse,
num_splits=num_splits,
)
def flash_attn_varlen_func(
q,
k,
v,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q=None,
max_seqlen_k=None,
seqused_q=None,
seqused_k=None,
page_table=None,
softmax_scale=None,
causal=False,
qv=None,
q_descale=None,
k_descale=None,
v_descale=None,
window_size=(-1, -1),
attention_chunk=0,
softcap=0.0,
num_splits=1,
pack_gqa=None,
sm_margin=0,
return_softmax_lse=False,
sinks=None,
ver=3,
):
return flash_attn_varlen_func_interface(
q=q,
k=k.view(q.dtype),
v=v.view(q.dtype),
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
softmax_scale=softmax_scale,
causal=causal,
return_attn_probs=return_softmax_lse,
softcap=softcap,
)
\ No newline at end of file
......@@ -16,6 +16,10 @@ from sglang.srt.layers.attention.utils import create_flashmla_kv_indices_triton
from sglang.srt.layers.dp_attention import get_attention_tp_size
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
from sglang.srt.utils import get_bool_env_var
from sgl_kernel.flash_mla import dcu_create_flashmla_kv_indices
if TYPE_CHECKING:
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.model_executor.model_runner import ModelRunner
......@@ -79,7 +83,7 @@ class FlashMLABackend(FlashInferMLAAttnBackend):
self.num_draft_tokens = model_runner.server_args.speculative_num_draft_tokens
def init_forward_metadata(self, forward_batch: ForwardBatch):
use_sglang_create_flashmla_kv_indices_triton = get_bool_env_var("SGLANG_CREATE_EXTEND_AFTER_DECODE_SPEC_INFO")
bs = forward_batch.batch_size
if forward_batch.forward_mode.is_decode_or_idle():
max_seqlen_pad = triton.cdiv(
......@@ -91,15 +95,27 @@ class FlashMLABackend(FlashInferMLAAttnBackend):
dtype=torch.int32,
device=forward_batch.seq_lens.device,
)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
None,
block_kv_indices,
self.req_to_token.stride(0),
max_seqlen_pad,
)
if use_sglang_create_flashmla_kv_indices_triton:
dcu_create_flashmla_kv_indices(
req_to_token_ptr = self.req_to_token,
req_pool_indices_ptr = forward_batch.req_pool_indices,
page_kernel_lens_ptr = forward_batch.seq_lens,
kv_start_idx = None,
kv_indices_ptr = block_kv_indices,
req_to_token_ptr_stride = self.req_to_token.stride(0),
kv_indices_ptr_stride = max_seqlen_pad,
)
else:
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
None,
block_kv_indices,
self.req_to_token.stride(0),
max_seqlen_pad,
)
mla_metadata, num_splits = get_mla_metadata(
forward_batch.seq_lens.to(torch.int32),
self.num_q_heads,
......@@ -121,15 +137,27 @@ class FlashMLABackend(FlashInferMLAAttnBackend):
dtype=torch.int32,
device=seq_lens.device,
)
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
forward_batch.req_pool_indices,
seq_lens,
None,
block_kv_indices,
self.req_to_token.stride(0),
max_seqlen_pad,
)
if use_sglang_create_flashmla_kv_indices_triton:
dcu_create_flashmla_kv_indices(
req_to_token_ptr = self.req_to_token,
req_pool_indices_ptr = forward_batch.req_pool_indices,
page_kernel_lens_ptr = forward_batch.seq_lens,
kv_start_idx = None,
kv_indices_ptr = block_kv_indices,
req_to_token_ptr_stride = self.req_to_token.stride(0),
kv_indices_ptr_stride = max_seqlen_pad,
)
else:
create_flashmla_kv_indices_triton[(bs,)](
self.req_to_token,
forward_batch.req_pool_indices,
forward_batch.seq_lens,
None,
block_kv_indices,
self.req_to_token.stride(0),
max_seqlen_pad,
)
mla_metadata, num_splits = get_mla_metadata(
seq_lens.to(torch.int32),
self.num_draft_tokens * self.num_q_heads,
......@@ -144,7 +172,7 @@ class FlashMLABackend(FlashInferMLAAttnBackend):
)
else:
super().init_forward_metadata(forward_batch)
def init_cuda_graph_state(
self,
max_bs: int,
......
from __future__ import annotations
import warnings
import torch
from sglang.srt.utils import get_bool_env_var, direct_register_custom_op
_USE_OPT_CAT = get_bool_env_var("SGLANG_USE_OPT_CAT")
if _USE_OPT_CAT:
try:
from lightop import ds_cat # type: ignore
except ImportError: # pragma: no cover
ds_cat = None
warnings.warn(
"SGLANG_USE_OPT_CAT 已开启但无法导入 lightop.ds_cat,退回 torch.cat"
)
else:
ds_cat = None
# TODO: 单独注册有些问题
def ds_cat_wrapper(A: torch.Tensor,
B: torch.Tensor,
dim: int,
mode: int) -> torch.Tensor:
output_shape = list(A.shape)
output_shape[dim] = A.shape[dim] + B.shape[dim]
C = torch.empty(output_shape, device=A.device, dtype=A.dtype)
ds_cat(A, B, C, mode)
return C
def ds_cat_fake(A: torch.Tensor,
B: torch.Tensor,
dim: int,
mode: int) -> torch.Tensor:
# 使用标准cat作为fake实现
return torch.cat([A, B], dim=dim)
direct_register_custom_op(
op_name="ds_cat",
op_func=ds_cat_wrapper,
mutates_args=[], # 没有修改参数,只有返回值
fake_impl=ds_cat_fake
)
def concat_decode_opt(A: torch.Tensor, B: torch.Tensor, dim: int):
assert dim == 2, "tensor dim must be 3 and concat dim must be 2"
mode = 0
if dim != 0:
return torch.ops.sglang.ds_cat(A, B, dim, mode)
assert False, "not support"
# def concat_decode_opt(A:torch.Tensor, B:torch.Tensor, dim:int):
# assert dim==2 , "tensor dim must be 3 and concat dim must be 2"
# output_shape = list(A.shape)
# output_shape[dim] = A.shape[dim] + B.shape[dim]
# C = torch.empty(output_shape, device=A.device, dtype=A.dtype)
# mode=0
# if dim!=0 :
# ds_cat(A, B, C, mode)
# return C
# assert False, "not support"
......@@ -47,7 +47,8 @@ if _is_hip:
"aiter is AMD specific kernel library. Please make sure aiter is installed on your AMD device."
)
else:
from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
# from sgl_kernel.flash_attn import flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_with_kvcache
@dataclass(frozen=True)
......
......@@ -20,7 +20,8 @@ if TYPE_CHECKING:
from sglang.srt.model_executor.model_runner import ModelRunner
from sgl_kernel import merge_state_v2
from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
# from sgl_kernel.flash_attn import flash_attn_varlen_func, flash_attn_with_kvcache
from sglang.srt.layers.attention.flashattention_interface import flash_attn_varlen_func, flash_attn_with_kvcache
class XPUAttentionBackend(AttentionBackend):
......
......@@ -160,21 +160,53 @@ class RMSNorm(CustomOp):
return output, residual_out
return rms_norm(x, self.weight.data, self.variance_epsilon)
# def forward_hip(
# self,
# x: torch.Tensor,
# residual: Optional[torch.Tensor] = None,
# ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
# if not x.is_contiguous():
# # NOTE: Remove this if aiter kernel supports discontinuous input
# x = x.contiguous()
# if residual is not None:
# if _vllm_version < Version("0.9"):
# fused_add_rms_norm(x, residual, self.weight.data, self.variance_epsilon)
# return x, residual
# else:
# residual_out = torch.empty_like(x)
# output = torch.empty_like(x)
# fused_add_rms_norm(
# output,
# x,
# residual_out,
# residual,
# self.weight.data,
# self.variance_epsilon,
# )
# return output, residual_out
# out = torch.empty_like(x)
# rms_norm(out, x, self.weight.data, self.variance_epsilon)
# return out
def forward_hip(
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
):
if not x.is_contiguous():
# NOTE: Remove this if aiter kernel supports discontinuous input
x = x.contiguous()
if residual is not None:
if _vllm_version < Version("0.9"):
fused_add_rms_norm(x, residual, self.weight.data, self.variance_epsilon)
try:
fused_add_rms_norm(
x,
residual,
self.weight.data,
self.variance_epsilon,
)
return x, residual
else:
residual_out = torch.empty_like(x)
except TypeError:
output = torch.empty_like(x)
residual_out = torch.empty_like(x)
fused_add_rms_norm(
output,
x,
......@@ -184,10 +216,13 @@ class RMSNorm(CustomOp):
self.variance_epsilon,
)
return output, residual_out
out = torch.empty_like(x)
rms_norm(out, x, self.weight.data, self.variance_epsilon)
return out
def forward_native(
self,
x: torch.Tensor,
......
......@@ -45,6 +45,18 @@ _is_hip = is_hip()
_disable_hip_linear_quant = _is_hip and get_bool_env_var(
"SGLANG_ROCM_DISABLE_LINEARQUANT"
)
_use_fused_rms_quant = get_bool_env_var("SGLANG_USE_FUSED_RMS_QUANT")
_use_fused_silu_mul_quant = get_bool_env_var("SGLANG_USE_FUSED_SILU_MUL_QUANT")
if _use_fused_rms_quant:
try:
from lmslim.quantize.quant_ops import lm_faster_rmsquant
except Exception as e:
print(f"Error: Import fused rmsquant error: {e}")
if _use_fused_silu_mul_quant:
try:
from lmslim.quantize.quant_ops import lm_fuse_silu_mul_quant
except Exception as e:
print(f"Error: Import fused silu_mul_quant error: {e}")
logger = logging.getLogger(__name__)
......@@ -1360,7 +1372,7 @@ class RowParallelLinear(LinearBase):
# It does not support additional parameters.
param.load_row_parallel_weight(loaded_weight)
def forward(self, input_, skip_all_reduce=False):
def forward(self, input_, skip_all_reduce=False, use_fused_silu_mul_quant=False):
if self.input_is_parallel:
input_parallel = input_
else:
......@@ -1374,10 +1386,19 @@ class RowParallelLinear(LinearBase):
# Only fuse bias add into GEMM for rank 0 (this ensures that
# bias will not get added more than once in TP>1 case)
bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
with use_symmetric_memory(
get_tp_group(), disabled=not is_allocation_symmetric()
):
output_parallel = self.quant_method.apply(self, input_parallel, bias=bias_)
if use_fused_silu_mul_quant:
xq, xs = lm_fuse_silu_mul_quant(input_parallel)
silu_quant_args = [xq, xs]
with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
output_parallel = self.quant_method.apply(self, input_parallel,
bias=bias_,
silu_quant_args=silu_quant_args
)
sm.tag(output_parallel)
else:
with use_symmetric_memory(parallel_state.get_tp_group()) as sm:
output_parallel = self.quant_method.apply(self, input_parallel, bias=bias_)
sm.tag(output_parallel)
if self.reduce_results and self.tp_size > 1 and not skip_all_reduce:
output = tensor_model_parallel_all_reduce(output_parallel)
......
......@@ -2,7 +2,6 @@ import logging
import torch
import triton
from sglang.srt.utils import ceil_div, is_cuda
logger = logging.getLogger(__name__)
......@@ -1015,196 +1014,133 @@ def zero_experts_compute_triton(
return output
from triton.language.extra import libdevice
from typing import Optional
@triton.jit
def compute_problem_sizes_w4a8_kernel(
masked_m_ptr,
problem_sizes1_ptr,
problem_sizes2_ptr,
n,
k,
num_experts,
BLOCK_SIZE: tl.constexpr,
):
pid = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = pid < num_experts
final_occurrences = tl.load(masked_m_ptr + pid, mask=mask, other=0)
ps1_idx_0 = pid * 3
ps1_idx_1 = ps1_idx_0 + 1
ps1_idx_2 = ps1_idx_0 + 2
ps2_idx_0 = pid * 3
ps2_idx_1 = ps2_idx_0 + 1
ps2_idx_2 = ps2_idx_0 + 2
ps1_mask_0 = ps1_idx_0 < num_experts * 3
ps1_mask_1 = ps1_idx_1 < num_experts * 3
ps1_mask_2 = ps1_idx_2 < num_experts * 3
ps2_mask_0 = ps2_idx_0 < num_experts * 3
ps2_mask_1 = ps2_idx_1 < num_experts * 3
ps2_mask_2 = ps2_idx_2 < num_experts * 3
tl.store(problem_sizes1_ptr + ps1_idx_0, 2 * n, mask=ps1_mask_0)
tl.store(problem_sizes1_ptr + ps1_idx_1, final_occurrences, mask=ps1_mask_1)
tl.store(problem_sizes1_ptr + ps1_idx_2, k, mask=ps1_mask_2)
tl.store(problem_sizes2_ptr + ps2_idx_0, k, mask=ps2_mask_0)
tl.store(problem_sizes2_ptr + ps2_idx_1, final_occurrences, mask=ps2_mask_1)
tl.store(problem_sizes2_ptr + ps2_idx_2, n, mask=ps2_mask_2)
def compute_problem_sizes_w4a8(
masked_m, problem_sizes1, problem_sizes2, n, k, num_experts
):
BLOCK_SIZE = 256
grid = lambda meta: (triton.cdiv(num_experts, meta["BLOCK_SIZE"]),)
compute_problem_sizes_w4a8_kernel[grid](
masked_m,
problem_sizes1,
problem_sizes2,
n,
k,
num_experts,
BLOCK_SIZE=BLOCK_SIZE,
)
return problem_sizes1, problem_sizes2
def deepep_ll_get_cutlass_w4a8_moe_mm_data(
masked_m,
problem_sizes1,
problem_sizes2,
num_experts,
n,
k,
def _per_token_quant_int8_one_kernel_opt(
x_ptr,
xq_ptr,
scale_ptr,
stride_x,
stride_xq,
N,
T_dim,
tokens_per_expert_ptr,
BLOCK: tl.constexpr
):
problem_sizes1, problem_sizes2 = compute_problem_sizes_w4a8(
masked_m, problem_sizes1, problem_sizes2, n, k, num_experts
)
return (
problem_sizes1.to(torch.int32),
problem_sizes2.to(torch.int32),
)
row_id = tl.program_id(0)
if tokens_per_expert_ptr is not None:
e = row_id // T_dim
t = row_id % T_dim
num_valid_tokens_for_e = tl.load(tokens_per_expert_ptr + e)
if t >= num_valid_tokens_for_e:
return
cols = tl.arange(0, BLOCK)
mask = cols < N
x = tl.load(x_ptr + row_id * stride_x + cols, mask=mask,
other=0.0).to(tl.float32)
absmax = tl.maximum(tl.max(tl.abs(x)), 1e-10)
scale_x = absmax / 127
x_q = x * (127 / absmax)
x_q = libdevice.nearbyint(x_q).to(tl.int8)
tl.store(xq_ptr + row_id * stride_xq + cols, x_q, mask=mask)
tl.store(scale_ptr + row_id, scale_x)
@triton.jit
def _silu_and_mul_post_per_tensor_quant_kernel(
input_ptr,
stride_input_expert,
stride_input_token,
stride_input_dim,
output_ptr,
stride_output_expert,
stride_output_token,
stride_output_dim,
def _per_token_quant_int8_kernel_opt(
x_ptr,
xq_ptr,
scale_ptr,
masked_m_ptr,
inner_dim,
fp8_max,
fp8_min,
BLOCK_N: tl.constexpr,
NUM_STAGE: tl.constexpr,
stride_x,
stride_xq,
N,
E_dim,
T_dim,
tokens_per_expert_ptr,
BLOCK: tl.constexpr
):
"""
Triton kernel: fused SiLU(gate) * up + per-tensor FP8 quantization.
Shape:
input: [E, T_padded, 2*D] -> gate: [:,:,D], up: [:,:,D]
output: [E, T_padded, D], dtype=float8_e4m3fn
"""
expert_id = tl.program_id(2)
block_id_token = tl.program_id(1)
block_id_dim = tl.program_id(0)
num_token_blocks = tl.num_programs(1)
token_num_cur_expert = tl.load(masked_m_ptr + expert_id)
scale = 1.0 / tl.load(scale_ptr).to(tl.float32)
stride_input_expert = tl.cast(stride_input_expert, tl.int32)
stride_output_expert = tl.cast(stride_output_expert, tl.int32)
stride_input_token = tl.cast(stride_input_token, tl.int32)
stride_output_token = tl.cast(stride_output_token, tl.int32)
offset_d = block_id_dim * BLOCK_N + tl.arange(0, BLOCK_N)
mask_d = offset_d < inner_dim
# base pointers for current expert and dim block
input_base_offs = input_ptr + expert_id * stride_input_expert + offset_d
output_base_offs = output_ptr + expert_id * stride_output_expert + offset_d
for token_idx in tl.range(
block_id_token, token_num_cur_expert, num_token_blocks, num_stages=NUM_STAGE
):
gate_ptr = input_base_offs + token_idx * stride_input_token
up_ptr = gate_ptr + inner_dim
gate = tl.load(gate_ptr, mask=mask_d, other=0.0).to(tl.float32)
up = tl.load(up_ptr, mask=mask_d, other=0.0).to(tl.float32)
# SiLU: x * sigmoid(x)
gate = gate / (1 + tl.exp(-gate))
gate = gate.to(input_ptr.dtype.element_ty)
gate_up = up * gate
scaled = gate_up * scale
output_q = tl.clamp(scaled, fp8_min, fp8_max).to(output_ptr.dtype.element_ty)
out_ptr = output_base_offs + token_idx * stride_output_token
tl.store(out_ptr, output_q, mask=mask_d)
def silu_and_mul_masked_post_per_tensor_quant_fwd(
input: torch.Tensor,
output: torch.Tensor,
masked_m: torch.Tensor,
scale: torch.Tensor,
) -> torch.Tensor:
"""
Fused SiLU + Mul + Per-Tensor Quantization to FP8.
Args:
input: [expert_num, token_num_padded, 2 * inner_dim]
output: [expert_num, token_num_padded, inner_dim], dtype=torch.float8_e4m3fn
masked_m: [expert_num], actual token count for each expert
scale: [1] or [expert_num], quantization scale (per-tensor or per-expert)
Returns:
output tensor
"""
assert input.is_contiguous()
assert output.is_contiguous()
assert output.dtype == torch.float8_e4m3fn
assert input.ndim == 3
assert input.shape[0] == masked_m.shape[0]
assert input.shape[-1] % 2 == 0
assert scale.numel() == 1 or scale.shape[0] == input.shape[0]
expert_num = input.shape[0]
# 3584
inner_dim = input.shape[-1] // 2
BLOCK_N = 256
BLOCK_M = 64 if expert_num < 4 else 32
NUM_STAGES = 3
hidden_dim_split_block_num = triton.cdiv(inner_dim, BLOCK_N)
grid = (hidden_dim_split_block_num, BLOCK_M, expert_num)
finfo = torch.finfo(torch.float8_e4m3fn)
fp8_max = finfo.max
fp8_min = -fp8_max
_silu_and_mul_post_per_tensor_quant_kernel[grid](
input,
*input.stride(),
output,
*output.stride(),
scale,
masked_m,
inner_dim,
fp8_max,
fp8_min,
BLOCK_N=BLOCK_N,
NUM_STAGE=NUM_STAGES,
)
return output
token_idx_start = tl.program_id(0)
grid_size = tl.num_programs(0)
num_total_tokens = E_dim * T_dim
for token_idx in range(token_idx_start, num_total_tokens, grid_size):
is_valid_token = True
if tokens_per_expert_ptr is not None:
e = token_idx // T_dim
t = token_idx % T_dim
num_valid_tokens_for_e = tl.load(tokens_per_expert_ptr + e)
if t >= num_valid_tokens_for_e:
is_valid_token = False
if is_valid_token:
cols = tl.arange(0, BLOCK)
mask = cols < N
x = tl.load(x_ptr + token_idx * stride_x + cols, mask=mask,
other=0.0).to(tl.float32)
absmax = tl.maximum(tl.max(tl.abs(x)), 1e-10)
scale_x = absmax / 127
x_q = x * (127 / absmax)
x_q = libdevice.nearbyint(x_q).to(tl.int8)
tl.store(xq_ptr + token_idx * stride_xq + cols, x_q, mask=mask)
tl.store(scale_ptr + token_idx, scale_x)
def per_token_quant_int8_triton_opt(x: torch.Tensor,
tokens_per_expert: Optional[torch.Tensor] = None):
if x.dim() != 3:
raise ValueError(f"Input must be 3D [E, T, H], but got {x.shape}")
E, T, H = x.shape
N = H
x_q = torch.empty_like(x, device=x.device, dtype=torch.int8)
scales = torch.empty(x.shape[:-1] + (1, ), device=x.device, dtype=torch.float32)
BLOCK = triton.next_power_of_2(N)
num_warps = min(max(BLOCK // 256, 1), 8)
if (E == 8 and T >= 1024) or (E == 16 and T >= 512):
num_warps = 1
num_tokens = E * T
grid_opt = num_tokens
if (E == 8 and T >= 1024) or (E == 16 and T >= 512):
grid_opt = max(1, num_tokens // (T // 256))
_per_token_quant_int8_kernel_opt[(grid_opt, )](
x,
x_q,
scales,
stride_x=x.stride(-2),
stride_xq=x_q.stride(-2),
N=N,
E_dim=E,
T_dim=T,
tokens_per_expert_ptr=tokens_per_expert,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=1,
)
else:
_per_token_quant_int8_one_kernel_opt[(grid_opt, )](
x,
x_q,
scales,
stride_x=x.stride(-2),
stride_xq=x_q.stride(-2),
N=N,
T_dim=T,
tokens_per_expert_ptr=tokens_per_expert,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=1,
)
return x_q, scales
......@@ -65,7 +65,7 @@ def inplace_fused_experts(
topk_ids: torch.Tensor,
b1: Optional[torch.Tensor] = None,
b2: Optional[torch.Tensor] = None,
activation: str = "silu",
activation: int = 0,#0 silu 1 gelu
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
......@@ -84,6 +84,8 @@ def inplace_fused_experts(
gemm1_limit: Optional[float] = None,
filter_expert: bool = True,
) -> None:
if isinstance(activation, int):
activation = "silu" if activation == 0 else "gelu"
fused_experts_impl(
hidden_states,
w1,
......@@ -123,7 +125,7 @@ def inplace_fused_experts_fake(
topk_ids: torch.Tensor,
b1: Optional[torch.Tensor] = None,
b2: Optional[torch.Tensor] = None,
activation: str = "silu",
activation: int = 0,#0 silu 1 gelu
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
......@@ -161,7 +163,7 @@ def outplace_fused_experts(
topk_ids: torch.Tensor,
b1: Optional[torch.Tensor] = None,
b2: Optional[torch.Tensor] = None,
activation: str = "silu",
activation: int = 0,#0 silu 1 gelu
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
......@@ -181,6 +183,8 @@ def outplace_fused_experts(
gemm1_limit: Optional[float] = None,
filter_expert: bool = True,
) -> torch.Tensor:
if isinstance(activation, int):
activation = "silu" if activation == 0 else "gelu"
return fused_experts_impl(
hidden_states,
w1,
......@@ -220,7 +224,7 @@ def outplace_fused_experts_fake(
topk_ids: torch.Tensor,
b1: Optional[torch.Tensor] = None,
b2: Optional[torch.Tensor] = None,
activation: str = "silu",
activation: int = 0,#0 silu 1 gelu
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
......@@ -273,9 +277,12 @@ def fused_experts(
block_shape: Optional[List[int]] = None,
):
topk_weights, topk_ids, _ = topk_output
filter_expert = (
moe_runner_config.num_experts is None
or moe_runner_config.num_experts != moe_runner_config.num_local_experts
act_id = (
0 if (
moe_runner_config.activation == 0
or (isinstance(moe_runner_config.activation, str)
and moe_runner_config.activation.lower() == "silu")
) else 1
)
if moe_runner_config.inplace:
assert not moe_runner_config.no_combine, "no combine + inplace makes no sense"
......@@ -287,7 +294,7 @@ def fused_experts(
topk_ids,
b1,
b2,
moe_runner_config.activation,
act_id,
moe_runner_config.apply_router_weight_on_input,
use_fp8_w8a8,
use_int8_w8a8,
......@@ -316,7 +323,7 @@ def fused_experts(
topk_ids,
b1,
b2,
moe_runner_config.activation,
act_id,
moe_runner_config.apply_router_weight_on_input,
use_fp8_w8a8,
use_int8_w8a8,
......@@ -366,7 +373,7 @@ def fused_experts_impl(
b1: Optional[torch.Tensor] = None,
b2: Optional[torch.Tensor] = None,
inplace: bool = False,
activation: str = "silu",
activation: int = 0,#0 silu 1 gelu
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
......@@ -386,6 +393,8 @@ def fused_experts_impl(
gemm1_limit: Optional[float] = None,
filter_expert: bool = True,
):
if isinstance(activation, int):
activation = "silu" if activation == 0 else "gelu"
padded_size = padding_size
if not (use_fp8_w8a8 or use_int8_w8a8) or block_shape is not None or _use_aiter:
padded_size = 0
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment