@@ -12,20 +12,19 @@ It is recommended to use uv for faster installation:
...
@@ -12,20 +12,19 @@ It is recommended to use uv for faster installation:
```bash
```bash
pip install--upgrade pip
pip install--upgrade pip
pip install uv
pip install uv
uv pip install"sglang[all]>=0.5.0rc2"
uv pip install"sglang[all]>=0.5.1"
```
```
**Quick fixes to common problems**
**Quick fixes to common problems**
- If you encounter `OSError: CUDA_HOME environment variable is not set`. Please set it to your CUDA install root with either of the following solutions:
- If you encounter `OSError: CUDA_HOME environment variable is not set`. Please set it to your CUDA install root with either of the following solutions:
1. Use `export CUDA_HOME=/usr/local/cuda-<your-cuda-version>` to set the `CUDA_HOME` environment variable.
1. Use `export CUDA_HOME=/usr/local/cuda-<your-cuda-version>` to set the `CUDA_HOME` environment variable.
2. Install FlashInfer first following [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html), then install SGLang as described above.
2. Install FlashInfer first following [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html), then install SGLang as described above.
- SGLang currently uses torch 2.8 and flashinfer for torch 2.8. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html). Please note that the FlashInfer pypi package is called `flashinfer-python` instead of `flashinfer`.
- If you want to develop SGLang, it is recommended to use docker. Please refer to [setup docker container](../developer_guide/development_guide_using_docker.md#setup-docker-container). The docker image is `lmsysorg/sglang:dev`.
- If you want to develop SGLang, it is recommended to use docker. Please refer to [setup docker container](../developer_guide/development_guide_using_docker.md#setup-docker-container). The docker image is `lmsysorg/sglang:dev`.
- SGLang currently uses torch 2.8 and flashinfer for torch 2.8. If you want to install flashinfer separately, please refer to [FlashInfer installation doc](https://docs.flashinfer.ai/installation.html). Please note that the FlashInfer pypi package is called `flashinfer-python` instead of `flashinfer`.