Unverified Commit 94e167ea authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Fix the default chunked prefill size (#2268)

parent 262e370f
......@@ -253,6 +253,8 @@ class Scheduler:
# Init chunked prefill
self.chunked_prefill_size = server_args.chunked_prefill_size
if self.chunked_prefill_size <= 0: # -1 means disable
self.chunked_prefill_size = None
self.being_chunked_req = None
self.is_mixed_chunk = (
self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
......
......@@ -118,7 +118,7 @@ class ModelRunner:
logger.info(
"Automatically turn off --chunked-prefill-size and adjust --mem-fraction-static for multimodal models."
)
server_args.chunked_prefill_size = None
server_args.chunked_prefill_size = -1
self.mem_fraction_static *= 0.95
# TODO: qwen2-vl does not support radix cache now, set disable_radix_cache=True automatically
if self.model_config.hf_config.architectures == [
......@@ -148,12 +148,14 @@ class ModelRunner:
set_cpu_offload_max_bytes(int(server_args.cpu_offload_gb * 1024**3))
# Init components
# Get memory before model loading
min_per_gpu_memory = self.init_torch_distributed()
# Load the model
self.sampler = Sampler()
self.load_model()
# Apply torch TP if model supports it
# Apply torch TP if the model supports it
supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
if self.tp_size > 1 and supports_torch_tp:
self.apply_torch_tp()
......@@ -161,6 +163,7 @@ class ModelRunner:
else:
self.torch_tp_applied = False
# Init memory pool and attention backends
if server_args.lora_paths is not None:
self.init_lora_manager()
self.init_memory_pool(
......
......@@ -58,7 +58,7 @@ class ServerArgs:
mem_fraction_static: Optional[float] = None
max_running_requests: Optional[int] = None
max_total_tokens: Optional[int] = None
chunked_prefill_size: int = 8192
chunked_prefill_size: Optional[int] = None
max_prefill_tokens: int = 16384
schedule_policy: str = "lpm"
schedule_conservativeness: float = 1.0
......@@ -128,7 +128,7 @@ class ServerArgs:
enable_dp_attention: bool = False
enable_torch_compile: bool = False
torch_compile_max_bs: int = 32
cuda_graph_max_bs: int = 160
cuda_graph_max_bs: Optional[int] = None
torchao_config: str = ""
enable_nan_detection: bool = False
enable_p2p_check: bool = False
......@@ -144,14 +144,15 @@ class ServerArgs:
if self.served_model_name is None:
self.served_model_name = self.model_path
if self.chunked_prefill_size is not None and self.chunked_prefill_size <= 0:
# Disable chunked prefill
self.chunked_prefill_size = None
if self.random_seed is None:
self.random_seed = random.randint(0, 1 << 30)
# Mem fraction depends on the tensor parallelism size
if is_hip():
gpu_mem = get_amdgpu_memory_capacity()
else:
gpu_mem = get_nvgpu_memory_capacity()
# Set mem fraction static, which depends on the tensor parallelism size
if self.mem_fraction_static is None:
if self.tp_size >= 16:
self.mem_fraction_static = 0.79
......@@ -164,18 +165,21 @@ class ServerArgs:
else:
self.mem_fraction_static = 0.88
# Adjust for GPUs with small memory capacities
if is_hip():
gpu_mem = get_amdgpu_memory_capacity()
else:
gpu_mem = get_nvgpu_memory_capacity()
# Set chunked prefill size, which depends on the gpu memory capacity
if self.chunked_prefill_size is None:
if gpu_mem < 25_000:
self.chunked_prefill_size = 2048
else:
self.chunked_prefill_size = 8192
if gpu_mem < 25000:
logger.warning(
"Your GPU has less than 25GB memory. You may want to set a smaller --chunked-prefill-size (e.g., 512) to improve performance."
)
# Set cuda graph max batch size
if self.cuda_graph_max_bs is None:
if gpu_mem < 25_000:
self.cuda_graph_max_bs = 8
else:
self.cuda_graph_max_bs = 160
# Choose kernel backends
# Set kernel backends
if not is_flashinfer_available():
self.attention_backend = "triton"
self.sampling_backend = "pytorch"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment