Unverified Commit 8ee9a850 authored by Tanjiro's avatar Tanjiro Committed by GitHub
Browse files

[Feature] Function Calling (#2544)


Co-authored-by: default avatarHaoyu Wang <120358163+HaoyuWang4188@users.noreply.github.com>
parent fd28640d
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Function Calling\n",
"\n",
"This notebook provides a quick-start guide to use function tooling using SGLang chat completions API\n",
"\n",
"## Supported Models\n",
"\n",
"Currently, we added the support for tools calling in the following models:\n",
" - Llama 3.2 models\n",
" - Llama 3.1 models\n",
" - Qwen 2.5 models\n",
" - InternLM Models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage\n",
"\n",
"### Launch a server\n",
"\n",
"This code block is equivalent to executing\n",
"\n",
"`python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
"--port 30000 --host 0.0.0.0`\n",
"in your terminal and wait for the server to be ready. Once the server is running, you can send test requests using curl or requests. The server implements the OpenAI-compatible APIs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sglang.utils import (\n",
" execute_shell_command,\n",
" wait_for_server,\n",
" terminate_process,\n",
" print_highlight,\n",
")\n",
"\n",
"\n",
"server_process = execute_shell_command(\n",
" \"\"\"\n",
" python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0\n",
"\"\"\"\n",
")\n",
"\n",
"wait_for_server(\"http://localhost:30000\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Single Round Invocation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from openai import OpenAI\n",
"\n",
"tools = [\n",
" {\n",
" \"type\": \"function\",\n",
" \"function\": {\n",
" \"name\": \"get_current_weather\",\n",
" \"description\": \"Get the current weather in a given location\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city and state, e.g. San Francisco, CA\",\n",
" },\n",
" \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"]},\n",
" },\n",
" \"required\": [\"location\"],\n",
" },\n",
" },\n",
" }\n",
"]\n",
"messages = [{\"role\": \"user\", \"content\": \"What's the weather like in Boston today?\"}]\n",
"\n",
"client = OpenAI(api_key=\"YOUR_API_KEY\", base_url=\"http://0.0.0.0:30000/v1\")\n",
"model_name = client.models.list().data[0].id\n",
"response = client.chat.completions.create(\n",
" model=model_name,\n",
" messages=messages,\n",
" temperature=0.8,\n",
" top_p=0.8,\n",
" stream=False,\n",
" tools=tools,\n",
")\n",
"\n",
"print(response)\n",
"\n",
"\"\"\"\n",
"\n",
"ChatCompletion(id='d6f620e1767e490d85b5ce45c15151cf', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, \n",
"role='assistant', audio=None, function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='0', function=Function(arguments='{\"a\": \"3\", \"b\": \"5\"}', name='add'), type='function')]), \n",
"matched_stop=128008)], created=1735411703, model='meta-llama/Llama-3.2-1B-Instruct', object='chat.completion', service_tier=None, system_fingerprint=None, \n",
"usage=CompletionUsage(completion_tokens=23, prompt_tokens=198, total_tokens=221, completion_tokens_details=None, prompt_tokens_details=None))\n",
"\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terminate_process(server_process)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## How to support a new model?\n",
"\n",
"For adding support of more different models:\n",
" 1. Update the `TOOLS_TAG_LIST` in `sglang/srt/utils.py` with the tool tag used by the model.\n",
" 2. Add support in `parse_tool_response` function for converting into tool calls `sglang/srt/utils.py`\n"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
...@@ -65,10 +65,13 @@ from sglang.srt.openai_api.protocol import ( ...@@ -65,10 +65,13 @@ from sglang.srt.openai_api.protocol import (
FileDeleteResponse, FileDeleteResponse,
FileRequest, FileRequest,
FileResponse, FileResponse,
FunctionResponse,
LogProbs, LogProbs,
ToolCall,
TopLogprob, TopLogprob,
UsageInfo, UsageInfo,
) )
from sglang.srt.utils import TOOLS_TAG_LIST, parse_tool_response
from sglang.utils import get_exception_traceback from sglang.utils import get_exception_traceback
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -879,6 +882,21 @@ def v1_chat_generate_request( ...@@ -879,6 +882,21 @@ def v1_chat_generate_request(
# None skips any image processing in GenerateReqInput. # None skips any image processing in GenerateReqInput.
if not isinstance(request.messages, str): if not isinstance(request.messages, str):
# Apply chat template and its stop strings. # Apply chat template and its stop strings.
tools = None
if request.tools and request.tool_choice != "none":
request.skip_special_tokens = False
if request.stream:
logger.warning("Streaming is not supported with tools.")
request.stream = False
if not isinstance(request.tool_choice, str):
tools = [
item.function.model_dump()
for item in request.tools
if item.function.name == request.tool_choice.function.name
]
else:
tools = [item.function.model_dump() for item in request.tools]
if chat_template_name is None: if chat_template_name is None:
openai_compatible_messages = [] openai_compatible_messages = []
for message in request.messages: for message in request.messages:
...@@ -902,6 +920,7 @@ def v1_chat_generate_request( ...@@ -902,6 +920,7 @@ def v1_chat_generate_request(
openai_compatible_messages, openai_compatible_messages,
tokenize=True, tokenize=True,
add_generation_prompt=True, add_generation_prompt=True,
tools=tools,
) )
if assistant_prefix: if assistant_prefix:
prompt_ids += tokenizer_manager.tokenizer.encode(assistant_prefix) prompt_ids += tokenizer_manager.tokenizer.encode(assistant_prefix)
...@@ -1041,11 +1060,46 @@ def v1_chat_generate_response(request, ret, to_file=False, cache_report=False): ...@@ -1041,11 +1060,46 @@ def v1_chat_generate_response(request, ret, to_file=False, cache_report=False):
finish_reason = ret_item["meta_info"]["finish_reason"] finish_reason = ret_item["meta_info"]["finish_reason"]
tool_calls = None
text = ret_item["text"]
if isinstance(request, list):
tool_choice = request[idx].tool_choice
tools = request[idx].tools
else:
tool_choice = request.tool_choice
tools = request.tools
if tool_choice != "none" and any([i in text for i in TOOLS_TAG_LIST]):
if finish_reason == "stop":
finish_reason = "tool_calls"
try:
text, call_info_list = parse_tool_response(text, tools) # noqa
tool_calls = [
ToolCall(
id=str(call_info[0]),
function=FunctionResponse(
name=call_info[1], arguments=call_info[2]
),
)
for call_info in call_info_list
]
except Exception as e:
logger.error(f"Exception: {e}")
return create_error_response(
HTTPStatus.BAD_REQUEST,
"Failed to parse fc related info to json format!",
)
if to_file: if to_file:
# to make the choice data json serializable # to make the choice data json serializable
choice_data = { choice_data = {
"index": 0, "index": 0,
"message": {"role": "assistant", "content": ret_item["text"]}, "message": {
"role": "assistant",
"content": ret_item["text"] if tool_calls is None else None,
"tool_calls": tool_calls,
},
"logprobs": choice_logprobs, "logprobs": choice_logprobs,
"finish_reason": (finish_reason["type"] if finish_reason else ""), "finish_reason": (finish_reason["type"] if finish_reason else ""),
"matched_stop": ( "matched_stop": (
...@@ -1057,7 +1111,11 @@ def v1_chat_generate_response(request, ret, to_file=False, cache_report=False): ...@@ -1057,7 +1111,11 @@ def v1_chat_generate_response(request, ret, to_file=False, cache_report=False):
else: else:
choice_data = ChatCompletionResponseChoice( choice_data = ChatCompletionResponseChoice(
index=idx, index=idx,
message=ChatMessage(role="assistant", content=ret_item["text"]), message=ChatMessage(
role="assistant",
content=ret_item["text"] if tool_calls is None else None,
tool_calls=tool_calls,
),
logprobs=choice_logprobs, logprobs=choice_logprobs,
finish_reason=(finish_reason["type"] if finish_reason else ""), finish_reason=(finish_reason["type"] if finish_reason else ""),
matched_stop=( matched_stop=(
......
...@@ -257,6 +257,34 @@ class ResponseFormat(BaseModel): ...@@ -257,6 +257,34 @@ class ResponseFormat(BaseModel):
json_schema: Optional[JsonSchemaResponseFormat] = None json_schema: Optional[JsonSchemaResponseFormat] = None
class Function(BaseModel):
"""Function descriptions."""
description: Optional[str] = Field(default=None, examples=[None])
name: str
parameters: Optional[object] = None
class Tool(BaseModel):
"""Function wrapper."""
type: str = Field(default="function", examples=["function"])
function: Function
class ToolChoiceFuncName(BaseModel):
"""The name of tool choice function."""
name: str
class ToolChoice(BaseModel):
"""The tool choice definition."""
function: ToolChoiceFuncName
type: Literal["function"] = Field(default="function", examples=["function"])
class ChatCompletionRequest(BaseModel): class ChatCompletionRequest(BaseModel):
# Ordered by official OpenAI API documentation # Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/chat/create # https://platform.openai.com/docs/api-reference/chat/create
...@@ -277,6 +305,10 @@ class ChatCompletionRequest(BaseModel): ...@@ -277,6 +305,10 @@ class ChatCompletionRequest(BaseModel):
temperature: float = 0.7 temperature: float = 0.7
top_p: float = 1.0 top_p: float = 1.0
user: Optional[str] = None user: Optional[str] = None
tools: Optional[List[Tool]] = Field(default=None, examples=[None])
tool_choice: Union[ToolChoice, Literal["auto", "required", "none"]] = Field(
default="auto", examples=["none"]
) # noqa
# Extra parameters for SRT backend only and will be ignored by OpenAI models. # Extra parameters for SRT backend only and will be ignored by OpenAI models.
top_k: int = -1 top_k: int = -1
...@@ -292,9 +324,25 @@ class ChatCompletionRequest(BaseModel): ...@@ -292,9 +324,25 @@ class ChatCompletionRequest(BaseModel):
ebnf: Optional[str] = None ebnf: Optional[str] = None
class FunctionResponse(BaseModel):
"""Function response."""
name: str
arguments: str
class ToolCall(BaseModel):
"""Tool call response."""
id: str
type: Literal["function"] = "function"
function: FunctionResponse
class ChatMessage(BaseModel): class ChatMessage(BaseModel):
role: Optional[str] = None role: Optional[str] = None
content: Optional[str] = None content: Optional[str] = None
tool_calls: Optional[List[ToolCall]] = Field(default=None, examples=[None])
class ChatCompletionResponseChoice(BaseModel): class ChatCompletionResponseChoice(BaseModel):
......
...@@ -1273,3 +1273,65 @@ def dataclass_to_string_truncated(data, max_length=2048): ...@@ -1273,3 +1273,65 @@ def dataclass_to_string_truncated(data, max_length=2048):
) )
else: else:
return str(data) return str(data)
TOOLS_TAG_LIST = ["<|plugin|>", "<function=", "<tool_call>", "<|python_tag|>"]
def parse_tool_response(text, tools, **kwargs):
"""Parse model response containing tool information.
Args:
text(str): model response in string format
tools(List): tools from user request
"""
if "<|plugin|>" in text: # internlm2
text, action = text.split("<|action_start|><|plugin|>")
action = action.split("<|action_end|>".strip())[0]
action = action[action.find("{") :]
action = json.loads(action)
name, parameters = action["name"], json.dumps(
action.get("parameters", action.get("arguments", {})), ensure_ascii=False
)
call_info_list = [(name, parameters)]
elif "<function=" in text: # llama3.1
action, _ = text.split("</function>")
parameters = action[action.find("{") :]
name = action.split("<function=")[1].split(">{")[0]
call_info_list = [(name, parameters)]
elif "<tool_call>" in text and "</tool_call>" in text: # qwen2.5
# get tool_call in text
pattern = r"<tool_call>(.*?)</tool_call>"
match_result_list = re.findall(pattern, text, re.DOTALL)
call_info_list = []
for match_result in match_result_list:
action = json.loads(match_result)
call_info_list.append(
(action["name"], json.dumps(action["arguments"], ensure_ascii=False))
)
# get text outside of tags
if not text.startswith("<tool_call>"):
text = text[: text.find("<tool_call>")]
elif not text.endswith("</tool_call>"):
text = text[text.rfind("</tool_call>") + len("</tool_call>") :]
else:
text = ""
elif "<|python_tag|>" in text: # llama3.2
_, action = text.split("<|python_tag|>")
action = json.loads(action)
name, parameters = action["name"], json.dumps(
action.get("parameters", action.get("arguments", {})), ensure_ascii=False
)
call_info_list = [(name, parameters)]
else:
raise RuntimeError(f"Unexpected model response: {text}")
call_info_list = [
(
[tool.function.name for tool in tools].index(call_info[0]),
call_info[0],
call_info[1],
)
for call_info in call_info_list
]
return text, call_info_list
...@@ -622,6 +622,58 @@ class TestOpenAIServerEBNF(unittest.TestCase): ...@@ -622,6 +622,58 @@ class TestOpenAIServerEBNF(unittest.TestCase):
text, pattern, f"Text '{text}' not matching the EBNF strict JSON shape" text, pattern, f"Text '{text}' not matching the EBNF strict JSON shape"
) )
def test_function_calling_format(self):
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
tools = [
{
"type": "function",
"function": {
"name": "add",
"description": "Compute the sum of two numbers",
"parameters": {
"type": "object",
"properties": {
"a": {
"type": "int",
"description": "A number",
},
"b": {
"type": "int",
"description": "A number",
},
},
"required": ["a", "b"],
},
},
}
]
messages = [{"role": "user", "content": "Compute (3+5)"}]
response = client.chat.completions.create(
model=self.model,
messages=messages,
temperature=0.8,
top_p=0.8,
stream=False,
tools=tools,
)
content = response.choices[0].message.content
tool_calls = response.choices[0].message.tool_calls
assert (
content is None
), "When tools provided by the response, content should be None"
assert (
isinstance(tool_calls, list) and len(tool_calls) > 0
), "Format not matched, tool_calls should be a list"
function_name = tool_calls[0].function.name
assert (
function_name == "add"
), "Function name should be add for the above response"
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment