Unverified Commit 8ecf6b9d authored by Stefan He's avatar Stefan He Committed by GitHub
Browse files

Support Flatten Tensor Update Weights to speed up MOE Update Weights by 20% (#8079)

parent 0418b9d4
......@@ -451,15 +451,20 @@ class Engine(EngineBase):
):
"""Update weights from distributed source. If there are going to be more updates, set `flush_cache` to be false
to avoid duplicated cache cleaning operation."""
obj = UpdateWeightsFromTensorReqInput(
serialized_named_tensors=[
if load_format == "flattened_bucket":
serialized_named_tensors = named_tensors
else:
serialized_named_tensors = [
MultiprocessingSerializer.serialize(named_tensors)
for _ in range(self.server_args.tp_size)
],
]
obj = UpdateWeightsFromTensorReqInput(
serialized_named_tensors=serialized_named_tensors,
load_format=load_format,
flush_cache=flush_cache,
)
loop = asyncio.get_event_loop()
return loop.run_until_complete(
self.tokenizer_manager.update_weights_from_tensor(obj, None)
)
......
......@@ -121,6 +121,10 @@ from sglang.srt.utils import (
set_cpu_offload_max_bytes,
set_cuda_arch,
)
from sglang.srt.weight_sync.tensor_bucket import (
FlattenedTensorBucket,
FlattenedTensorMetadata,
)
_is_hip = is_hip()
_is_npu = is_npu()
......@@ -896,6 +900,12 @@ class ModelRunner:
load_format: Optional[str] = None,
):
monkey_patch_torch_reductions()
if load_format == "flattened_bucket":
# Handle flattened bucket format
return self._update_weights_from_flattened_bucket(
flattened_tensor_bucket_dict=named_tensors
)
# We need to get device after patch otherwise the device would be wrong
infered_device = torch.cuda.current_device()
......@@ -914,6 +924,38 @@ class ModelRunner:
raise NotImplementedError(f"Unknown load_format={load_format}")
return True, "Success"
def _update_weights_from_flattened_bucket(
self,
flattened_tensor_bucket_dict,
):
"""Handle flattened bucket format for weight updates"""
flattened_tensor = flattened_tensor_bucket_dict["flattened_tensor"]
metadata = flattened_tensor_bucket_dict["metadata"]
# Convert metadata dict to our format
converted_metadata = []
for meta in metadata:
converted_meta = FlattenedTensorMetadata(
name=meta.name,
shape=meta.shape,
dtype=meta.dtype,
start_idx=meta.start_idx,
end_idx=meta.end_idx,
numel=meta.numel,
)
converted_metadata.append(converted_meta)
# Create bucket and reconstruct tensors
bucket = FlattenedTensorBucket(
flattened_tensor=flattened_tensor, metadata=converted_metadata
)
reconstructed_tensors = bucket.reconstruct_tensors()
# Load the reconstructed tensors using the standard method
self.model.load_weights(reconstructed_tensors)
return True, "Success"
def get_weights_by_name(
self, name: str, truncate_size: int = 100
) -> Optional[torch.Tensor]:
......
from dataclasses import dataclass
from typing import List, Tuple
import torch
@dataclass
class FlattenedTensorMetadata:
"""Metadata for a tensor in a flattened bucket"""
name: str
shape: torch.Size
dtype: torch.dtype
start_idx: int
end_idx: int
numel: int
class FlattenedTensorBucket:
"""
A bucket that flattens multiple tensors into a single tensor for efficient processing
while preserving all metadata needed for reconstruction.
"""
def __init__(
self,
named_tensors: List[Tuple[str, torch.Tensor]] = None,
flattened_tensor: torch.Tensor = None,
metadata: List[FlattenedTensorMetadata] = None,
):
"""
Initialize a tensor bucket from a list of named tensors OR from pre-flattened data.
Args:
named_tensors: List of (name, tensor) tuples (for creating new bucket)
flattened_tensor: Pre-flattened tensor (for reconstruction)
metadata: Pre-computed metadata (for reconstruction)
"""
if named_tensors is not None:
# Create bucket from named tensors
self.metadata: List[FlattenedTensorMetadata] = [None] * len(named_tensors)
self.flattened_tensor: torch.Tensor = None
if not named_tensors:
raise ValueError("Cannot create empty tensor bucket")
# Collect metadata and flatten tensors
current_idx = 0
flattened_tensors: List[torch.Tensor] = [None] * len(named_tensors)
for i, (name, tensor) in enumerate(named_tensors):
flattened = tensor.flatten()
flattened_tensors[i] = flattened
# Store metadata
numel = flattened.numel()
metadata_obj = FlattenedTensorMetadata(
name=name,
shape=tensor.shape,
dtype=tensor.dtype,
start_idx=current_idx,
end_idx=current_idx + numel,
numel=numel,
)
self.metadata[i] = metadata_obj
current_idx += numel
# Concatenate all flattened tensors
self.flattened_tensor = torch.cat(flattened_tensors, dim=0)
else:
# Initialize from pre-flattened data
if flattened_tensor is None or metadata is None:
raise ValueError(
"Must provide either named_tensors or both flattened_tensor and metadata"
)
self.flattened_tensor = flattened_tensor
self.metadata = metadata
def get_flattened_tensor(self) -> torch.Tensor:
"""Get the flattened tensor containing all bucket tensors"""
return self.flattened_tensor
def get_metadata(self) -> List[FlattenedTensorMetadata]:
"""Get metadata for all tensors in the bucket"""
return self.metadata
def reconstruct_tensors(self) -> List[Tuple[str, torch.Tensor]]:
"""
Reconstruct original tensors from flattened tensor with optimized performance.
Uses memory-efficient operations to minimize allocations and copies.
"""
# preallocate the result list
reconstructed = [None] * len(self.metadata)
for i, meta in enumerate(self.metadata):
tensor = self.flattened_tensor[meta.start_idx : meta.end_idx].reshape(
meta.shape
)
# batch dtype conversion (if needed)
if tensor.dtype != meta.dtype:
tensor = tensor.to(meta.dtype)
reconstructed[i] = (meta.name, tensor)
return reconstructed
......@@ -5,6 +5,7 @@ import unittest
import torch
import sglang as sgl
from sglang.srt.weight_sync.tensor_bucket import FlattenedTensorBucket
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST, CustomTestCase
......@@ -112,6 +113,59 @@ class TestUpdateWeightsFromTensor(CustomTestCase):
engine.shutdown()
def test_update_weights_from_tensor_load_format_flattened_bucket(self):
"""Test updating weights using flattened_bucket format"""
engine = sgl.Engine(model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
# Create a small set of parameters for testing
param_names = [f"model.layers.{i}.mlp.up_proj.weight" for i in range(6, 10)]
# Check original values
_check_param(engine, param_names[0], [0.0087, -0.0214, -0.0004, 0.0039, 0.0110])
# Create new tensors with different values
new_tensors = []
for _, name in enumerate(param_names):
# Create tensors with different values for each parameter
value = 2.0 # Different value for each parameter
new_tensor = torch.full((16384, 2048), value, device="cuda")
new_tensors.append((name, new_tensor))
# Create a flattened bucket
flattened_bucket = FlattenedTensorBucket(named_tensors=new_tensors)
# Extract the flattened tensor and metadata in the format expected by model_runner
flattened_tensor = flattened_bucket.get_flattened_tensor()
metadata = flattened_bucket.get_metadata()
# Create the dict format expected by _update_weights_from_flattened_bucket
bucket_dict = {"flattened_tensor": flattened_tensor, "metadata": metadata}
# Serialize the bucket data
from sglang.srt.utils import MultiprocessingSerializer
serialized_bucket = MultiprocessingSerializer.serialize(
bucket_dict, output_str=True
)
# Create a list where each rank contains the same serialized data
# This simulates the distributed environment where each rank has the same data
serialized_bucket_list = [serialized_bucket]
# Update weights using flattened_bucket format
time_start = time.perf_counter()
engine.update_weights_from_tensor(
named_tensors=serialized_bucket_list, load_format="flattened_bucket"
)
update_time = time.perf_counter() - time_start
print(f"Flattened bucket update time: {update_time:.03f}")
# Verify the weights were updated correctly
for i, param_name in enumerate(param_names):
_check_param(engine, param_name, [2.0] * 5)
engine.shutdown()
def _check_param(engine, param_name, expect_values):
actual_values = torch.tensor(engine.get_weights_by_name(param_name))[0, :5]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment