Unverified Commit 8cd42504 authored by Yun Dai's avatar Yun Dai Committed by GitHub
Browse files

[quantization] fix channelwise conversion with scalar weight scale (#4596)

parent 6a384d5c
......@@ -74,6 +74,11 @@ def convert_to_channelwise(
(sum(logical_widths), 1), dtype=torch.float32, device=weight_scale.device
)
# Handle scalar tensor case: broadcast same scale to all channels
if weight_scale.dim() == 0:
weight_scale_channel.fill_(weight_scale.item())
return weight_scale_channel
# Expand each scale to match the size of each logical matrix.
start = 0
for idx, logical_width in enumerate(logical_widths):
......
......@@ -33,6 +33,15 @@ DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST = "neuralmagic/Meta-Llama-3-8B-Instruct
DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST = (
"neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic"
)
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST = (
"nvidia/Llama-3.1-8B-Instruct-FP8"
)
# TODO(yundai424): right now specifying to an older revision since the latest one
# carries kv cache quantization which doesn't work yet
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION = (
"13858565416dbdc0b4e7a4a677fadfbd5b9e5bb9"
)
DEFAULT_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.1-8B-Instruct"
DEFAULT_SMALL_MODEL_NAME_FOR_TEST = "meta-llama/Llama-3.2-1B-Instruct"
DEFAULT_MOE_MODEL_NAME_FOR_TEST = "mistralai/Mixtral-8x7B-Instruct-v0.1"
......
......@@ -6,6 +6,8 @@ from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST,
DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST,
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION,
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
......@@ -105,5 +107,47 @@ class TestEvalFP8DynamicQuantAccuracy(unittest.TestCase):
)
class TestEvalFP8ModelOptQuantAccuracy(unittest.TestCase):
def _run_test(self, model, other_args, expected_score):
base_url = DEFAULT_URL_FOR_TEST
other_args = other_args or []
process = popen_launch_server(
model,
base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=other_args,
)
try:
args = SimpleNamespace(
base_url=base_url,
model=model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
temperature=0.1,
)
metrics = run_eval(args)
self.assertGreaterEqual(metrics["score"], expected_score)
finally:
kill_process_tree(process.pid)
def test_mmlu_offline_only(self):
"""Test with offline quantization only."""
self._run_test(
model=DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST,
other_args=[
"--quantization",
"modelopt",
"--revision",
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION,
],
expected_score=0.64,
)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment