Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
change
sglang
Commits
8c298031
Unverified
Commit
8c298031
authored
Jul 04, 2025
by
Yi Zhang
Committed by
GitHub
Jul 03, 2025
Browse files
refactor llama4 dp attention logic (#7729)
parent
4de03953
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
32 additions
and
45 deletions
+32
-45
python/sglang/srt/models/llama4.py
python/sglang/srt/models/llama4.py
+32
-45
No files found.
python/sglang/srt/models/llama4.py
View file @
8c298031
...
@@ -27,9 +27,8 @@ from sglang.srt.distributed import (
...
@@ -27,9 +27,8 @@ from sglang.srt.distributed import (
get_tensor_model_parallel_world_size
,
get_tensor_model_parallel_world_size
,
tensor_model_parallel_all_reduce
,
tensor_model_parallel_all_reduce
,
)
)
from
sglang.srt.layers.communicator
import
LayerCommunicator
,
LayerScatterModes
from
sglang.srt.layers.dp_attention
import
(
from
sglang.srt.layers.dp_attention
import
(
dp_gather_partial
,
dp_scatter
,
get_attention_tp_rank
,
get_attention_tp_rank
,
get_attention_tp_size
,
get_attention_tp_size
,
get_local_attention_dp_size
,
get_local_attention_dp_size
,
...
@@ -367,7 +366,10 @@ class Llama4DecoderLayer(nn.Module):
...
@@ -367,7 +366,10 @@ class Llama4DecoderLayer(nn.Module):
bias_o_proj
=
False
,
bias_o_proj
=
False
,
prefix
=
add_prefix
(
"self_attn"
,
prefix
),
prefix
=
add_prefix
(
"self_attn"
,
prefix
),
)
)
is_moe_layer
=
(
layer_id
+
1
)
%
config
.
interleave_moe_layer_step
==
0
self
.
config
=
config
is_moe_layer
=
self
.
_is_moe_layer
(
layer_id
)
is_previous_moe_layer
=
self
.
_is_moe_layer
(
layer_id
-
1
)
if
is_moe_layer
:
if
is_moe_layer
:
self
.
feed_forward
=
Llama4MoE
(
self
.
feed_forward
=
Llama4MoE
(
config
=
config
,
config
=
config
,
...
@@ -387,6 +389,22 @@ class Llama4DecoderLayer(nn.Module):
...
@@ -387,6 +389,22 @@ class Llama4DecoderLayer(nn.Module):
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
)
self
.
layer_scatter_modes
=
LayerScatterModes
.
init_new
(
layer_id
=
layer_id
,
num_layers
=
config
.
num_hidden_layers
,
is_layer_sparse
=
is_moe_layer
,
is_previous_layer_sparse
=
is_previous_moe_layer
,
)
self
.
layer_communicator
=
LayerCommunicator
(
layer_scatter_modes
=
self
.
layer_scatter_modes
,
input_layernorm
=
self
.
input_layernorm
,
post_attention_layernorm
=
self
.
post_attention_layernorm
,
)
def
_is_moe_layer
(
self
,
layer_id
:
int
)
->
bool
:
return
(
layer_id
+
1
)
%
self
.
config
.
interleave_moe_layer_step
==
0
def
forward
(
def
forward
(
self
,
self
,
positions
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
...
@@ -394,57 +412,26 @@ class Llama4DecoderLayer(nn.Module):
...
@@ -394,57 +412,26 @@ class Llama4DecoderLayer(nn.Module):
forward_batch
:
ForwardBatch
,
forward_batch
:
ForwardBatch
,
residual
:
Optional
[
torch
.
Tensor
],
residual
:
Optional
[
torch
.
Tensor
],
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
if
hidden_states
.
shape
[
0
]
==
0
:
hidden_states
,
residual
=
self
.
layer_communicator
.
prepare_attn
(
residual
=
hidden_states
hidden_states
,
residual
,
forward_batch
else
:
)
# Self Attention
if
residual
is
None
:
if
hidden_states
.
shape
[
0
]
!=
0
:
residual
=
hidden_states
hidden_states
=
self
.
input_layernorm
(
hidden_states
)
else
:
hidden_states
,
residual
=
self
.
input_layernorm
(
hidden_states
,
residual
)
hidden_states
=
self
.
self_attn
(
hidden_states
=
self
.
self_attn
(
positions
=
positions
,
positions
=
positions
,
hidden_states
=
hidden_states
,
hidden_states
=
hidden_states
,
forward_batch
=
forward_batch
,
forward_batch
=
forward_batch
,
)
)
# Gather
hidden_states
,
residual
=
self
.
layer_communicator
.
prepare_mlp
(
if
get_tensor_model_parallel_world_size
()
>
1
:
hidden_states
,
residual
,
forward_batch
# all gather and all reduce
)
if
self
.
local_dp_size
!=
1
:
if
self
.
attn_tp_rank
==
0
:
hidden_states
+=
residual
hidden_states
,
local_hidden_states
=
(
forward_batch
.
gathered_buffer
,
hidden_states
,
)
dp_gather_partial
(
hidden_states
,
local_hidden_states
,
forward_batch
)
dp_scatter
(
residual
,
hidden_states
,
forward_batch
)
hidden_states
=
self
.
post_attention_layernorm
(
hidden_states
)
else
:
hidden_states
=
tensor_model_parallel_all_reduce
(
hidden_states
)
hidden_states
,
residual
=
self
.
post_attention_layernorm
(
hidden_states
,
residual
)
else
:
hidden_states
,
residual
=
self
.
post_attention_layernorm
(
hidden_states
,
residual
)
# Fully Connected
# Fully Connected
hidden_states
=
self
.
feed_forward
(
hidden_states
,
forward_batch
)
hidden_states
=
self
.
feed_forward
(
hidden_states
,
forward_batch
)
hidden_states
,
residual
=
self
.
layer_communicator
.
postprocess_layer
(
# TODO(ch-wan): use reduce-scatter in MLP to avoid this scatter
hidden_states
,
residual
,
forward_batch
# Scatter
)
if
self
.
local_dp_size
!=
1
:
# important: forward batch.gathered_buffer is used both after scatter and after gather.
# be careful about this!
hidden_states
,
global_hidden_states
=
(
forward_batch
.
gathered_buffer
[:
forward_batch
.
input_ids
.
shape
[
0
]],
hidden_states
,
)
dp_scatter
(
hidden_states
,
global_hidden_states
,
forward_batch
)
return
hidden_states
,
residual
return
hidden_states
,
residual
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment