Unverified Commit 8ae9d4bb authored by b8zhong's avatar b8zhong Committed by GitHub
Browse files

Revert "[ROCm] Remove vLLM rope dependency & use AITER impl" (#12028)

parent 1c304aa9
......@@ -124,23 +124,6 @@ class RotaryEmbedding(CustomOp):
self.cos_sin_cache: torch.Tensor
self.register_buffer("cos_sin_cache", cache, persistent=False)
self._hip_cached_cos: Optional[torch.Tensor] = None
self._hip_cached_sin: Optional[torch.Tensor] = None
if _use_aiter:
half_rotary = cache.shape[-1] // 2
cos_cache = (
cache[:, :half_rotary]
.contiguous()
.view(self.max_position_embeddings, 1, 1, half_rotary)
)
sin_cache = (
cache[:, half_rotary:]
.contiguous()
.view(self.max_position_embeddings, 1, 1, half_rotary)
)
self.register_buffer("_hip_cos_cache", cos_cache, persistent=False)
self.register_buffer("_hip_sin_cache", sin_cache, persistent=False)
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
"""Compute the inverse frequency."""
# NOTE(woosuk): To exactly match the HF implementation, we need to
......@@ -201,109 +184,6 @@ class RotaryEmbedding(CustomOp):
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
def forward_hip(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: Optional[torch.Tensor],
offsets: Optional[torch.Tensor] = None,
fused_set_kv_buffer_arg: Optional["FusedSetKVBufferArg"] = None,
*,
is_nope_first: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
if not _use_aiter:
return self.forward_native(
positions, query, key, offsets, fused_set_kv_buffer_arg
)
if fused_set_kv_buffer_arg is not None:
raise NotImplementedError(
"fused_set_kv_buffer_arg is not supported for HIP path"
)
import aiter as ops
if not hasattr(self, "_hip_cos_cache") or not hasattr(self, "_hip_sin_cache"):
raise RuntimeError("HIP caches not initialised")
cos = self._hip_cached_cos
sin = self._hip_cached_sin
if cos is None or cos.device != query.device or cos.dtype != query.dtype:
cos = self._hip_cos_cache.to(query.device, dtype=query.dtype)
sin = self._hip_sin_cache.to(query.device, dtype=query.dtype)
self._hip_cached_cos = cos
self._hip_cached_sin = sin
rotate_style = 0 if self.is_neox_style else 1
num_tokens = positions.numel()
query_shape = query.shape
query = query.view(1, num_tokens, -1, self.head_size)
key_shape = key.shape if key is not None else None
if key is not None:
key = key.view(1, num_tokens, -1, self.head_size)
positions = positions.view(*query.shape[:2])
if offsets is not None:
offsets = offsets.view(*query.shape[:2])
if not is_nope_first:
query_rot = query[..., : self.rotary_dim]
key_rot = key[..., : self.rotary_dim] if key is not None else None
else:
query_rot = query[..., -self.rotary_dim :]
key_rot = key[..., -self.rotary_dim :] if key is not None else None
if key_rot is None:
if offsets is None:
ops.rope_cached_positions_fwd_inplace(
query_rot,
cos,
sin,
positions,
rotate_style,
reuse_freqs_front_part=True,
nope_first=is_nope_first,
)
else:
ops.rope_cached_positions_offsets_fwd_inplace(
query_rot,
cos,
sin,
positions,
offsets,
rotate_style,
reuse_freqs_front_part=True,
nope_first=is_nope_first,
)
return query.view(query_shape), None
if offsets is None:
ops.rope_cached_positions_2c_fwd_inplace(
query_rot,
key_rot,
cos,
sin,
positions,
rotate_style,
reuse_freqs_front_part=True,
nope_first=is_nope_first,
)
else:
ops.rope_cached_positions_offsets_2c_fwd_inplace(
query_rot,
key_rot,
cos,
sin,
positions,
offsets,
rotate_style,
reuse_freqs_front_part=True,
nope_first=is_nope_first,
)
return query.view(query_shape), key.view(key_shape) if key is not None else None
def forward_npu(
self,
positions: torch.Tensor,
......
......@@ -111,239 +111,6 @@ class TestRotaryEmbeddingAITer(CustomTestCase):
with self.subTest(case=case):
self._run_case_aiter(*case)
def test_ops_equivalence_basic(self) -> None:
import aiter as ops
from aiter.rotary_embedding import RotaryEmbedding as AiterRotaryEmbedding
(
head_size,
rotary_dim,
max_pos,
base,
is_neox,
dtype,
device,
bs,
seq_len,
num_q,
num_kv,
) = (
128,
64,
2048,
10000,
True,
torch.bfloat16,
"cuda",
2,
32,
4,
2,
)
rope = AiterRotaryEmbedding(
head_size, rotary_dim, max_pos, base, is_neox, dtype
).to(device)
positions = torch.arange(seq_len, device=device).repeat(bs)
num_tokens = positions.numel()
q2d = torch.randn(num_tokens, num_q * head_size, dtype=dtype, device=device)
k2d = torch.randn(num_tokens, num_kv * head_size, dtype=dtype, device=device)
q_ref, k_ref = rope.forward_hip(positions.clone(), q2d.clone(), k2d.clone())
q_sbhd = q2d.view(1, num_tokens, num_q, head_size)
k_sbhd = k2d.view(1, num_tokens, num_kv, head_size)
cos = rope.cos_cache.to(device=device, dtype=dtype)
sin = rope.sin_cache.to(device=device, dtype=dtype)
pos_b_s = positions.view(1, num_tokens)
rotate_style = 0 if is_neox else 1
ops.rope_cached_positions_2c_fwd_inplace(
q_sbhd,
k_sbhd,
cos,
sin,
pos_b_s,
rotate_style,
reuse_freqs_front_part=True,
nope_first=False,
)
self.assertTrue(q_ref.shape == q2d.shape)
self.assertTrue(k_ref.shape == k2d.shape)
torch.testing.assert_close(q_ref, q_sbhd.view_as(q2d), atol=1e-2, rtol=1e-2)
torch.testing.assert_close(k_ref, k_sbhd.view_as(k2d), atol=1e-2, rtol=1e-2)
def test_ops_equivalence_nope_first(self) -> None:
import aiter as ops
from aiter.rotary_embedding import RotaryEmbedding as AiterRotaryEmbedding
(
head_size,
rotary_dim,
max_pos,
base,
is_neox,
dtype,
device,
bs,
seq_len,
num_q,
num_kv,
) = (
128,
64,
2048,
10000,
True,
torch.bfloat16,
"cuda",
1,
16,
2,
2,
)
rope = AiterRotaryEmbedding(
head_size, rotary_dim, max_pos, base, is_neox, dtype
).to(device)
positions = torch.arange(seq_len, device=device).repeat(bs)
num_tokens = positions.numel()
q2d = torch.randn(num_tokens, num_q * head_size, dtype=dtype, device=device)
k2d = torch.randn(num_tokens, num_kv * head_size, dtype=dtype, device=device)
q_ref, k_ref = rope.forward_hip(
positions.clone(), q2d.clone(), k2d.clone(), is_nope_first=True
)
q_sbhd = q2d.view(1, num_tokens, num_q, head_size)
k_sbhd = k2d.view(1, num_tokens, num_kv, head_size)
cos = rope.cos_cache.to(device=device, dtype=dtype)
sin = rope.sin_cache.to(device=device, dtype=dtype)
pos_b_s = positions.view(1, num_tokens)
rotate_style = 0 if is_neox else 1
q_rot = q_sbhd[..., -rotary_dim:]
k_rot = k_sbhd[..., -rotary_dim:]
ops.rope_cached_positions_2c_fwd_inplace(
q_rot,
k_rot,
cos,
sin,
pos_b_s,
rotate_style,
reuse_freqs_front_part=True,
nope_first=True,
)
torch.testing.assert_close(q_ref, q_sbhd.view_as(q2d), atol=1e-2, rtol=1e-2)
torch.testing.assert_close(k_ref, k_sbhd.view_as(k2d), atol=1e-2, rtol=1e-2)
def test_sglang_rotary_embedding_forward_hip_matches_native(self) -> None:
from sglang.srt.layers.rotary_embedding import (
RotaryEmbedding as SglRotaryEmbedding,
)
(
head_size,
rotary_dim,
max_pos,
base,
is_neox,
dtype,
device,
bs,
seq_len,
num_q,
num_kv,
) = (
128,
64,
2048,
10000,
True,
torch.bfloat16,
"cuda",
2,
64,
4,
2,
)
rope = SglRotaryEmbedding(
head_size, rotary_dim, max_pos, base, is_neox, dtype
).to(device)
positions = torch.arange(seq_len, device=device).repeat(bs)
q = torch.randn(bs * seq_len, num_q * head_size, dtype=dtype, device=device)
k = torch.randn(bs * seq_len, num_kv * head_size, dtype=dtype, device=device)
q_ref, k_ref = rope.forward_native(positions.clone(), q.clone(), k.clone())
q_hip, k_hip = rope.forward_hip(positions.clone(), q.clone(), k.clone())
torch.testing.assert_close(q_ref, q_hip, atol=1e-2, rtol=1e-2)
torch.testing.assert_close(k_ref, k_hip, atol=1e-2, rtol=1e-2)
def test_llama3_rotary_embedding_forward_hip_matches_native(self) -> None:
from sglang.srt.layers.rotary_embedding import get_rope as sgl_get_rope
(
head_size,
rotary_dim,
max_pos,
base,
is_neox,
dtype,
device,
bs,
seq_len,
num_q,
num_kv,
) = (
128,
128,
2048,
10000,
True,
torch.bfloat16,
"cuda",
2,
64,
4,
2,
)
rope = sgl_get_rope(
head_size,
rotary_dim,
max_pos,
base,
is_neox,
rope_scaling={
"rope_type": "llama3",
"factor": 1.0,
"low_freq_factor": 1.0,
"high_freq_factor": 1.0,
"original_max_position_embeddings": max_pos,
},
dtype=dtype,
).to(device)
positions = torch.arange(seq_len, device=device).repeat(bs)
q = torch.randn(bs * seq_len, num_q * head_size, dtype=dtype, device=device)
k = torch.randn(bs * seq_len, num_kv * head_size, dtype=dtype, device=device)
q_ref, k_ref = rope.forward_native(positions.clone(), q.clone(), k.clone())
q_hip, k_hip = rope.forward_hip(positions.clone(), q.clone(), k.clone())
torch.testing.assert_close(q_ref, q_hip, atol=1e-2, rtol=1e-2)
torch.testing.assert_close(k_ref, k_hip, atol=1e-2, rtol=1e-2)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment